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Pulse rate (PR) is one of the most important markers for assessing a person’s health. With the increasing
demand for long-term health monitoring, much attention is being paid to contactless PR estimation using
imaging photoplethysmography (iPPG). This non-invasive technique is based on the analysis of subtle changes
in skin color. Despite efforts to improve iPPG, the existing algorithms are vulnerable to less-constrained
scenarios (i.e., head movements, facial expressions, and environmental conditions). In this article, we propose
a novel end-to-end spatio-temporal network, namely X-iPPGNet, for instantaneous PR estimation directly from
facial video recordings. Unlike most existing systems, our model learns the iPPG concept from scratch without
incorporating any prior knowledge or going through the extraction of blood volume pulse signals. Inspired by
the Xception network architecture, color channel decoupling is used to learn additional photoplethysmographic
information and to effectively reduce the computational cost and memory requirements. Moreover, X-iPPGNet
predicts the pulse rate from a short time window (2 s), which has advantages with high and sharply fluctuating
pulse rates. The experimental results revealed high performance under all conditions including head motions,
facial expressions, and skin tone. Our approach significantly outperforms all current state-of-the-art methods
on three benchmark datasets: MMSE-HR (M AE = 4.10 ; RMSE = 5.32; r = 0.85), UBFC-rPPG (M AE = 4.99
; RMSE = 6.26 ; r = 0.67), MAHNOB-HCI (M AE = 3.17 ; RMSE = 3.93 ; r = 0.88).

1. Introduction ods have been carried out under constrained environments and rely on

certain assumptions regarding light-skin interaction and head motions.

Pulse rate (PR) is one of the important indicators of a person’s
health that needs to be monitored routinely to identify a range of
health issues. Electrocardiography and Photoplethysmography (PPG)
are the main ways of measuring heart rate activity. Both techniques
use contact sensors that need to be attached to body parts. Despite
the high accuracy and robustness provided by these devices, specific
conditions are required to acquire accurate measurements. Moreover,
contact with skin can be inconvenient or even infeasible in some critical
cases such as burns, skin ulcers, or contagious diseases [1]. These
constraints limit their use in realistic scenarios. Over the last decade,
great progress has been made in non-contact pulse rate estimation using
imaging photoplethysmography, due to its wide application domains
[2-8]. iPPG is an optical technique allowing a remote assessment of
the pulse rate by observing the blood-volume variations on a person’s
face using a simple camera.

Conventional iPPG algorithms are based on hand-crafted features
approaches, which generally involve multi-stage pipelines and require
multiple image and signal processing steps [2-6,9]. Most of these meth-
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Therefore, they perform reasonably well under controlled conditions.
However, their performance degrades significantly under challenging
scenarios such as large head movement, poor lighting conditions, and
very dark skin [8,10].

Inspired by the recent breakthroughs in computer vision tasks
[11-14], current state-of-the-art algorithms incorporate deep learning
architectures in different stages of the conventional imaging pho-
toplethysmography pipeline. Deep neural networks have been used
to accurately extract the iPPG signal [7,8,15,16]. However, several
limitations remain to be resolved. These systems are not end-to-end,
so they still require pre-processing or post-processing steps as well as
a larger time-span window to estimate pulse rate. Furthermore, heart
rate activity should be measured even in unconstrained scenarios. Many
factors can affect the measurement: the person may move his head or
express emotions, his face can be partially occluded or light conditions
may be changing continuously. These situations affect the quality of
the extracted iPPG signal, thus degrading the accuracy of the predicted
PR values.
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To address these drawbacks, we developed an end-to-end deep
learning model (X-iPPGNet) for instantaneous pulse rate estimation
directly from raw facial videos. The architecture is fully automatic and
does not require any prior knowledge or special pre-processing or post-
processing. This work is an extension and improvement of the method
proposed as part of the Vision for Vitals Challenge [17]. We propose
a new efficient architecture and evaluate its effectiveness using public
databases. We also examine the impact of challenging conditions on
performance.

The main contributions of this study are summarized as follows:

1. We propose a novel one-stage approach based on an end-to-end
trainable neural network.

2. X-iPPGNet predicts pulse rate from short-time video excerpts
(2 s), which is particularly relevant in the case of high and
sharply fluctuating pulse rates.

3. Color channels decoupling is used to extract additional photo-
plethysmographic information.

4. The first use of the BP4D+ database in conjunction with data
augmentation.

5. Extensive evaluations on multiple public databases to analyze
the effectiveness and generalizability of the proposed method
against a range of challenging factors.

The remainder of the article is organized as follows: related works
are briefly exposed in Section 2. Section 3 presents the materials and
methods. Experimental results are presented and discussed in Sections 4
and 5 respectively. Finally, conclusions and future works are given in
Section 6.

2. Related works

By surveying existing research on contactless pulse rate estimation
using iPPG, we can identify the existence of two major approaches
according to the way of iPPG signal extraction, either manually using
conventional methods [2-6,9], or automatically using deep learning
models [7,8,15,16]. Earlier works on iPPG relied on hand-crafted fea-
tures approaches that generally include image and signal processing
operations. The image processing techniques are first applied to locate
the skin regions containing relevant information about the subtle color
changes associated with blood flow. Different color spaces and different
regions of interest (ROI) were exploited to constitute raw iPPG signals
using a spatial averaging operation. Verkruysse et al. [9] have initially
computed raw iPPG signals from the green channel using a set of
predefined ROI. Several face detectors and trackers have been used
to extract the entire face or sub-regions from the face such as the
forehead or cheeks [18-22]. Bousefsaf et al. [23] proposed to select
only the pixels of interest using a custom skin segmentation, while
Tulyakov et al. [24] developed an approach to choose dynamically the
ROI using self-adaptive matrix completion. Furthermore, different color
spaces have been studied besides the standard RGB. For example, the
u* component from the CIE L*u*v* color space [23] and V from YUV
have been exploited [25].

In the second step, signal processing algorithms are performed to in-
crease the signal-to-noise ratio and remove the noise from iPPG signal.
Some of the popular studies include blind source separation methods,
such as independent component analysis [18] and principal compo-
nents analysis [19]. On the other hand, Haan and his group achieved
further improvements by proposing model-based approaches [3-5].
They developed different color subspace transformations to overcome
motion artifacts and improve the quality of iPPG signal.

With the great success of deep learning and more specifically convo-
lutional neural networks for medical imaging and computer vision tasks
[12,26,27], several groups developed deep learning-based methods for
iPPG estimation. According to the recent review of Ni et al. [28], exist-
ing methods are built using VGG-style CNN [7,29,30], or combine CNN
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and LSTM to take into account the temporal information [8,31,32],
or use 3D-CNN directly to simultaneously learn spatial and temporal
features [15,33-36]. To name some of the promising works, Chen
and McDuff [7] proposed a convolutional attention network named
DeepPhys, which consists of two-stream CNN to extract blood volume
pulse waveform from facial video under varying lighting and significant
head motions. They used an appearance model based on an attention
mechanism to find the appropriate regions of interest (ROI) and to
guide the motion representation model. Radim et al. [29] proposed a
two-stage convolutional neural network method composed of 2D CNN
and 1D CNN respectively. The first one extracts the iPPG signal while
the second regresses pulse rate values. Niu et al. [8] generated spatial—
temporal maps from multiple ROI over the face and then trained a
CNN-RNN network to regress the average PR value. Yu et al. [15]
introduced a spatial-temporal deep neural network (PhysNet) to extract
iPPG signals from raw facial videos, and then measure the averaged
PR and HRYV features. AutoHR is a recent contribution proposed by Yu
et al. [16]. The authors used temporal difference convolution beside a
strong backbone discovered via neural architecture search to estimate
accurately the iPPG signal from image sequences.

All the methods mentioned above are based on several processing
stages. They mainly use deep learning to recover iPPG signals from
facial videos. However, some works have adopted deep neural networks
to pulse rate estimation in an end-to-end manner without passing by
iPPG signal extraction. Bousefsaf et al. [34] were the first to demon-
strate the possibility of pulse rate estimation from a face video without
any additional processing. They put forward a 3D CNN trained purely
on synthetic data. Huang et al. [32] developed a one-stage spatio-
temporal network that combines 3D convolutional and LSTM modules
to extract spatial and temporal features and a Dense layer to pulse rate
value estimation. Quzar et al. [37] proposed an efficient model built on
a linear stack of depthwise separable convolution layers concatenated
with residual connections. This method has advantages in terms of
speed and simplicity and can run in real-time both on CPUs and GPUs.
Existing iPPG-based PR measurement approaches are summarized in
Table 1.

3. Materials and methods
3.1. Datasets

The availability of huge databases and advanced neural architec-
tures have underpinned the great success of deep learning approaches
in computer vision tasks. In the field of remote PR estimation, the
lack of large-scale heart rate (HR) datasets has limited the use of
deep learning models [8]. Existing public domain HR databases are
quite limited not only in data size but also in diversity. Head motion,
facial expressions, occlusion, and skin tone correspond to the main
challenging conditions that affect the performance of contactless pulse
rate measurement from facial videos. However, previous works had not
addressed all of these problems due to the quality and scale of the
aforementioned databases.

For this study, we used four public datasets for pulse rate es-
timation to evaluate the performance of the proposed method. We
trained X-iPPGNet on BP4D+ [38], a public large-scale database, while
MAHNOB-HCI [39], UBFC-rPPG [40], and MMSE-HR [38] were used
for testing. We briefly describe each of these three datasets in the
subsequent paragraphs while we present in detail the BP4D+ database
as we are the first to use it for training deep neural networks. Table 2
gives detailed comparisons between the different databases used in our
experiments.

3.1.1. MMSE-HR

MMSE-HR [38] was collected for contactless pulse rate estimation
under challenging conditions. It consists of 102 RGB facial videos
recorded at 25 frames-per-second (fps) from 40 subjects (17 males and
23 females) with various ethnic/racial ancestries. The corresponding
average pulse rates were gathered using a contact BVP sensor (sampling
frequency: 1K HZ).
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Table 1
A brief summary of existing iPPG-based PR estimation approaches and their pros & cons.
Multiple stage One stage
Conventional Deep learning
Th 1 [41
ermal [41] Thermal [42] RG.B [32]

Monochromatic [43]

Input
R.G.B [24,44] .
Five band [45] R.G.B [7,16] Synthetic Data [34]
Face ROI detection Face ROI detection .
Preprocessin & tracking [18,24] & tracking [8] Face ROI detection
P 8 8 ’ 8 & tracking [32]
Color space transformation Spatial-temporal maps
[23,25] [8]
Signal decomposition [2] Video magnification [46]
Filtering [3,18,19] FFT [47]
Postprocessing FFT [2,48] Peaks detection [15] -

Peaks detection [18,45]

Deep learning model
[8,29]

iPPG signal extraction Spatial average [1,6,18]

Deep regression model -
[7,15]

Allows pulse wave

Good generezability Good generezability

Pros features extraction Allows pulse wave Easy to deploy
features extraction Short time span window
Hard to deploy Hard to deploy
Cons Require pre-processing Require pre-processing Does not allow pulse'
5 . wave features extraction
or post-processing steps or post-processing steps
Large time sp ar? w indow Large time span window
Poor generezability
Table 2
Summary of the public-domain databases used in our experiments.
Database Nb of participants Nb videos FPS Ethnicity Task/Condition
MMSE-HR [38] 40 102 25 Latino/Hispanic, White, Emotion elicitation
African American,
Asian, and Others
MAHNOB-HCI [39] 27 527 61 Caucasian and Asian Emotion elicitation
UBFC-rPPG [40] 42 42 30 - Interaction
BP4D+ [38] 140 1400 25 Latino/Hispanic, White, Emotion elicitation

African American,
Asian, and Others

3.1.2. MAHNOB-HCI

MAHNOB-HCI [39] is a commonly used benchmark to assess the
effectiveness and generalizability of non-contact pulse rate estimation
methods. It includes 527 videos from 27 subjects (12 males and 15 fe-
males) along with their corresponding physiological signals. All videos
are recorded at 61 fps with a resolution of 780 x 580 pixels. ECG signal
has been used to calculate the ground truth pulse rate values.

3.1.3. UBFC-rPPG

UBFC-rPPG [40] consists of 42 videos from 42 subjects. The videos
were recorded using a low-cost webcam at 30 fps and a resolution of
640 x 480 pixels. The duration of each recording varies between 50 and
90 s. A Contec Medical CMS50E finger pulse oximeter is synchronized
with the video recordings to establish the ground truth PPG signal.

3.1.4. BP4D+

BP4D+ [38] is a large-scale public database mainly dedicated to
multimodal spontaneous emotion recognition based on facial expres-
sions and physiological parameters. It includes several physiological
signals such as heart rate, respiratory rate, and blood pressure. Com-
pared to existing pulse rate databases, BP4D+ is significantly larger
in terms of data amount and ethnic diversity (including Black, White,
Asian, and Hispanic/Latino). Additionally, it was collected under chal-
lenging scenarios such as significant head motions, wild pulse rate
range, facial expressions, and occlusions. 140 subjects (82 females and
58 males) participated in ten sessions set up to elicit different emotions.

1400 RGB videos lasting 30 s to 1 min were recorded at 25 fps. The
resolution of each video is 1040 x 1392 pixels. Pulse rate and other
physiological signals were collected with contact sensors at 1K Hz.
Fig. 2 shows the histogram of ground truth pulse rate distribution in
BP4D+. Pulse rate values vary from 47 to 139 beats per minute (bpm),
which almost covers the typical pulse rate range. The histogram forms
an inverse Gaussian distribution because most healthy and relaxed
adults have a resting heart rate comprised between 70 and 90 beats
per minute (see Fig. 2). On the other hand, due to a large amount of
corrupted ground truth signals (see a typical example in Fig. 3), we
recalculated the pulse rates from the blood pressure signals available
in the database. We also removed segments where facial regions are
outside the image.

3.2. Proposed framework

The general framework for pulse rate estimation from facial videos
is illustrated in Fig. 1. We treat this task as a one-stage regression
problem that takes batches of 50 frames (corresponding to 2 s) as input
and regresses the pulse rate value as output. First, face segmentation is
performed to eliminate the background and non-skin areas [49]. Then
the face region is cropped from the segmented face image according to
the coordinates of the first non-zero pixel on each side of the image.
Finally, the face image sequences are scaled and fed to a 3D fully con-
volutional neural network. We assume that the proposed architecture
can automatically focus on the most vascularized areas of the face. It
then learns the spatio-temporal features associated with iPPG.
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X-iPPGNet

3D Depthwise

Separable
Convolutions

Dense layers

PR Predictor

Input

. (50%x120%x160%3)
Input video

Fig. 1. Overview of the proposed framework for visual pulse rate estimation. Face segmentation and cropping are performed first on the input video to get rid of non-skin areas.
Then the facial image sequences are fed to a deep neural network (X-iPPGNet) consisting of 3D Depthwise Separable Convolutions for spatial and temporal features extraction,

and Dense layers for pulse rate prediction.
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Fig. 3. Example of ground truth pulse rates (participant F005) showing strong
inconsistencies. Red curve: ground truth pulse rate provided by the database; Blue
curve: pulse rate computed from the raw blood pressure signal.

3.2.1. Face segmentation

The extraction of regions of interest (ROI) is the first step of al-
most all video-based pulse rate estimation [8,15,18,32,50]. It aims
to maximize the signal-to-noise ratio by only keeping the skin pixels
that carry the iPPG information. Several face and facial landmarks
detectors have been employed to locate ROI. However, these techniques
often fail in situations involving head movement, occlusion, or facial
expressions. Many other factors can also affect ROI extraction, such
as lighting and background. We compared the performance of the
three most popular face detectors used for iPPG extraction in terms of
efficiency, i.e., Viola&Jones [51], Dlib [52], and MTCNN [53]. Table 3
illustrates the number of missed images on the MMSE-HR dataset [38]
presented in Section 3.1. MMSE-HR has been widely used as a test set
in several works and contains about 108117 images. The results show

Table 3
Number of missed images according to the most popular face detection algorithms.

Face detector Number of missed frames

Viola-Jones [51] 1375
Dlib [52] 227
MTCNN [53] 48
Face segmentation [49] 0

that the three face detectors mentioned above fail to perform well in
unconstrained scenes.

To overcome the limitations of face detectors, especially in uncon-
strained scenarios, we performed face segmentation using one of the
state-of-the-art algorithms [49] (see Table 3). This method, originally
proposed for face-swapping ideally works in all conditions without
missing any frames. Faces are properly segmented from backgrounds
and occlusions with high accuracy. Some processed images extracted
from the MMSE-HR database are shown in Fig. 4.

3.2.2. Pulse rate estimation neural network

Most of the existing video-based PR estimation approaches that
integrate a deep learning model rely on a VGG-style CNN. Tempo-
ral information is processed using recurrent networks [8,32], spatio-
temporal convolutions [15,34], or by incorporating another temporal
branch in parallel [7]. The VGG-style CNN is a basic architecture that
uses a standard convolution stack with no residual blocks [54]. Despite
its simplicity, it is more prone to overfitting. It also performs worse
than other deep learning architectures on many computer vision tasks
[55]. In addition, standard convolution considers all spatial and color
channel information together. However, previous studies showed that
color channels have different physiological properties and that pulsatile
activity varies from one color to another [56]. Although the green
channel featuring the strongest plethysmographic signal and carries
more PPG information compared to the other channels, the red and blue
channels also contained useful and complementary plethysmographic
information that should not be neglected [18]. Nevertheless, and to
the best of our knowledge, all deep learning-based approaches have
combined RGB channels. This can lead to loss of useful features across
channels, affecting measurement accuracy.

In this study, we designed an end-to-end deep regression framework
based on a modified Xception network [57]. This architecture out-
performs other deep learning models in several computer vision tasks
[55,58]. Furthermore, it relies on depthwise separable convolution
instead of standard convolution operations that require larger amounts
of memory and computational cost. A depthwise separable convolu-
tion extension for 3D volumes is used' to learn the relevant features
associated with the cardiac rhythm of each color channel separately.

The idea behind the depthwise separable convolution is that the
depth and spatial dimension of a filter can be decoupled within a

L https://github.com/alexandrosstergiou/keras-DepthwiseConv3D.
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Fig. 4. Examples showing the ability of the face segmentation model to work in difficult scenarios. Top figures: raw images, bottom figures: corresponding segmentations.

convolutional layer. First, the video embedding dimensions are sep-
arated and an independent spatio-temporal convolution is performed
for each color channel. This operation is called depthwise convolution.
It aims to extract local features from each color channel of the input
image sequences separately and to capture the temporal relationships
among the spatial feature sequences. Then, a pointwise convolution
is performed on the convoluted tensor to merge the feature maps
across channels in the embedding dimension. This effectively reduces
computational costs and memory requirements.

Fig. 5 presents the overall architecture of the proposed X-iPPGNet,
which consists of three blocks (entry, middle, and exit). It includes 36
convolutional layers structured in 14 modules, all linked with shortcuts
as in the ResNet architecture, except for the first and last modules. Since
the network is very deep, these residual connections allow reducing the
impact of gradient vanishing. Each convolutional layer is followed by
a batch-normalization to stabilize the training process and accelerate
the convergence. ReLU activation functions are also used to perform
nonlinear mapping. The features extraction output is flattened and fed
into two dense layers of 1024 and 1 neurons, respectively, to estimate
the pulse rate value.

In summary, the proposed non-contact pulse rate estimation frame-
work is a one-stage pipeline that predicts the average pulse rate in only
2 s video fragments. The input is represented as a 5-dimensional tensor
(Nbacthx Nbframesx ImH eight x ImW eight x Channel) (Where N batch
is the batch-size; Nbframes is the length of face video clip; ImHeight,
ImW eight, and Channel are the size of each frame) and the output is
the estimated pulse rate in beats per minute.

We consider pulse rate prediction as a one-step regression problem.
Training is fully supervised where each 2-seconds video fragment takes
a ground truth pulse rate obtained with a contact device as a training
label. In the training phase, the network learns to associate the ground
truth pulse rate value with each facial video sequence by constructing
a mapping relationship between inputs and outputs, i.e., mapping of
a three-dimensional tensor (video data) to a single scalar (pulse rate).
After the training phase, the network would be able to estimate pulse
rate within the trained pulse rate range.

3.2.3. Implementation details

3.2.3.1. Training.

The proposed architecture is implemented with Keras and Tensor-
flow frameworks and trained with two Nvidia Quadro P6000s. The
videos have been cut into sequences of 50 frames (corresponding to
2 s). The size of each frame is 160 x 120 x 3 (ImHeight X ImW eight X
Channel). The total number of sequences is 39762. Inspired by the

SWATS optimization procedure [59], we started training with a Rec-
tified Adam (RAdam) optimizer [60] before switching to Stochastic
Gradient Descent (SGD) [61] when the validation accuracy stops im-
proving. The learning rate was initially set to 104, and then decreased
to 107%. We train the network for about 25 epochs with a batch size of
64 (Nbacth = 64) and using the mean-squared-error loss function. In
addition, a dropout technique [62] is applied before the final dense
layer of the network (the dropout rate is set to 0.4). L1 and L2
regularization strategies are employed as well, which help to overcome
overfitting issues and improve the model generalizability to new data.

3.2.3.2. Training set augmentation.

A common problem with limited and imbalanced datasets when
training a neural network is overfitting and poor predictive perfor-
mance, specifically for minority label samples.

X-iPPGNet was first trained without data augmentation. However,
several problems that hinder the accuracy of pulse rate predictions have
caught our attention. They are mainly caused by the highly imbalanced
pulse rate samples in the BP4D+ database and also by the subjects
skin tone [38]. Therefore, high and low pulse rate values and the
skin color type with fewer samples are more difficult to predict. It
is very challenging for a deep model to learn relevant features on
poorly represented data. Neural networks tend to focus on targets with
large numbers of samples. To address this issue, a data augmentation
technique was applied to increase the size of the training set. Since
more samples are available in the mid-pulse rates range (70, 90) bpm
and less outside this range (see Fig. 2), we performed threefold offline
data augmentation on the video sequences associated with pulse rate
values greater than 90 bpm or lower than 70 bpm.

Following the same strategy presented in [63], we performed stan-
dard geometric augmentation and video magnification to increase the
training set size and improve the robustness of the model. The geo-
metric augmentation involves image transformations such as random
clockwise and counterclockwise rotations by up to 20 degrees, scaling
(in and out) of up to 20%, and horizontal and vertical video image
shifting by 10% of the frame’s width and height. The Eulerian video
magnification (EVM) technique [64] was used to amplify the subtle
colorimetric fluctuations due to iPPG in the videos. The intensity of
these fluctuations can be weak for pixels that cover dark skin. The EVM
method has been proven effective for PR estimation [46,64,65]. This
technique takes a cropped ROI video sequence as input and applies
spatial decomposition followed by temporal filtering to the frames.
Laplacian pyramid is used for spatial decomposition, while temporal
filtering is performed by applying the Fourier transform for each pixel.
The amplification factor is fixed to 60 while Frequencies outside the
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Fig. 5. X-iPPGNet architecture proposed in this work. It corresponds to a modified version of the Xception network. 2D depthwise separable convolution layers are replaced by

3D depthwise separable convolution to capture both spatial and temporal features across video frames. A Dense layer is used instead of a Global Average Pooling layer. The input
video fragment first passes through the entry flow, then through the middle flow which is repeated eight times, and finally through the exit flow which ends with a dense layer

of 1 neuron, to estimate the corresponding pulse rate.

cutoff (45-240 bpm) are set to zero. Finally, the inverse Fourier trans-
form is applied to reconstruct the frames. The resulting video is then
amplified and reveals hidden subtle changes in the skin color instigated
by blood flow in facial vessels.

4. Experiments

We aim to achieve several goals in the conducted experiments.
First, we prove the possibility of measuring pulse rate with high ac-
curacy without going through the commonly used iPPG signal ex-
traction step. Secondly, we provide a performance comparison with
various developed baseline systems as well as other deep learning ap-
proaches recently proposed for contactless pulse rate estimation using
iPPG. Thirdly, we demonstrate the generalization ability of our method
under challenging conditions to illustrate the proposed framework’s
efficiency.

In order to study the generalizability and the effectiveness of the
proposed X-iPPGNet presented in Section 3.2, three widely used public-
domain databases are employed namely MMSE-HR [38], MAHNOB-HCI
[391, and UBFC-rPPG [40]. MMSE-HR is directly used for testing with-
out any additional processing since it was collected under the same
conditions as BP4D+ (the training dataset). UBFC-rPPG and MAHNOB-
HCI are downsampled from 30 fps and 61 fps to 25 fps in order to
harmonize the fps of training and testing videos. For each experiment,
we do not use videos of the same subject in both training and testing.
We evaluate and compare the performance with other state-of-the-art
techniques using different metrics: the standard deviation (SD), the
mean absolute error (MAE, see Eq. (1)), the root mean square error
(RMSE, see Eq. (2)), and the Pearson’s correlation coefficient (r, see
Eq. (3)). PR; and fl?, represent the ground truth and estimated pulse
rate, respectively.
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4.1. Results

4.1.1. Evaluation on MMSE-HR

We first evaluate the generalization ability of X-iPPGNet by training
the network on BP4D+ and testing it on MMSE-HR (see Section 3.1).

Table 4 gives detailed comparisons with several state-of-the-art ap-
proaches including hand-crafted methods (Li2014 [66], CHROM [48],
SAMC [24]) and deep learning-based methods (EVM-CNN [46], Phys-
Net [15], RhythmNet [8] and Auto-HR [16]). The X-iPPGNet proposed
in this study achieves the best performance (SD = 5.34 bpm; MAE =
4.10 bpm; RMSE = 5.32 bpm and r = 0.85), outperforming all compet-
ing methods. Comparison with the other state-of-the-art methods are
taken from [16].

4.1.2. Evaluation on UBFC-rPPG

In this experiment, we followed the same strategy presented in [32].
25 videos were randomly selected to fine-tune the model pre-trained
on BP4D+. The remaining videos were reserved for testing. Since the
UBFC-rPPG dataset contains very limited facial videos (only one video
is recorded for each subject), we used a three-fold subject-independent
cross-validation strategy. Performance comparison results with other
state-of-the-art techniques are taken from [67] and presented in Ta-
ble 5. The proposed X-iPPGNet achieves good results and generalizes
well in unseen domains. It should be noted that we achieved the best
SD (6.25 bpm) and RMSE (6.26 bpm) among the existing methods.
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Table 4
PR estimation results by the proposed approach and several state-of-the-art methods on MMSE-HR.
Approach Method SD (bpm) RMSE (bpm) r
Multiple stage Li2014 20.02 19.95 0.37
hand ira o dg CHROM 14.08 13.97 0.55
SAMC 12.24 11.37 0.71
Multinle stage RhthmNet 6.98 12.76 0.78
e Il’eami f PhysNet 12.76 13.25 0.44
P 8 AutoHR 571 5.87 0.89
One stage X-iPPGNet (Ours) 5.34 5.32 0.85
Table 5
PR estimation results by the proposed approach and several state-of-the-art methods on UBFC-RPPG.
Approach Method SD (bpm) MAE (bpm) RMSE (bpm) r
Green 20.2 10.2 20.6 -
. ICA 18.6 8.43 18.8 -
Multiple stage hand-crafted CHROM 191 10.6 20.3 _
POS 10.4 4.12 10.5 -
Multiple stage deep learning Meta-rPPG 7.12 5.97 7.42 0.53
3DCNN 8.55 5.45 8.64 -
One stage PRNet 6.45 5.29 7.24 -
X-iPPGNet (Ours) 6.25 4.99 6.26 0.67
Table 6
PR estimation results by the proposed approach and several state-of-the-art methods on MAHNOB-HCI.
Approach Method SD (bpm) MAE (bpm) RMSE (bpm) r
Poh 2011 13.5 - 13.6 0.36
Multiple stage CHROM - 13.49 22.36 0.21
hand-crafted Li 2014 6.88 - 7.62 0.81
SAMC 5.81 4.96 6.23 0.83
SynRhythm 10.88 - 11.08 -
DeepPhys - 4.57 - -
HR-CNN - 7.25 9.24 0.51
Multiple stage rPPGNet 7.82 5.51 7.82 0.78
deep learning RhythmNet 3.99 - 3.99 0.87
PhysNet 7.84 5.96 7.88 0.76
AutoHR 4.73 3.78 5.10 0.86
PulseGAN - 4.15 6.53 0.71
One stage X-iPPGNet (Ours) 3.93 3.17 3.93 0.88

4.1.3. Evaluation on MAHNOB-HCI

We further verify the efficiency and generalizability of X-iPPGNet
on MAHNOB-HCI [39], which is the most commonly used dataset
for non-contact PR estimation. The high compression rate and spon-
taneous movements caused by emotional stimulation make PR esti-
mation challenging. We used the same three-fold subject-independent
cross-validation protocol as for UBFC-rPPG (see Section 4.1.2). We
randomized 66% of the videos to fine-tune the model pre-trained on
BP4D+ and used the remaining videos for testing. Table 6 compares the
performance of X-iPPGNet with state-of-the-art techniques, including
hand-crafted and deep learning-based methods. From the results, we
can observe that the X-iPPGNet ranks first on all metrics (SD = 3.93;
MAE = 3.17; RMSE = 3.93 and r = 0.88). It is clear that our model
performs very well under various image acquisition conditions and
highly compressed videos.

4.2. Key components analysis

We also provide additional analysis to examine the impact of chal-
lenging factors, i.e., pulse rate distribution values, skin tone, gender,
and head movements. All experiments have been conducted on the
MMSE-HR dataset.

4.2.1. Impact of pulse rate distribution values

To further analyze the impact of PR distribution values on the per-
formance of X-iPPGNet, we plot the differences between estimated and
ground-truth pulse rate versus ground-truth estimation. This Bland—
Altman plot (see Fig. 6) shows that the distribution is concentrated

inside the 95% limits of agreement (1.96 SD) for low (<70) and
mid (70, 90) pulse rates range. However, predictions of high pulse
rates exhibit some outliers (>90). We suppose that this observation is
connected to the imbalanced training set (see Fig. 2). Furthermore, the
error rate increases significantly for higher pulse rates than for mid and
low pulse rates due to their fluctuations over the time window [32].

Moreover, the Bland-Altman exhibits a marked negative trend. The
model tends to over-estimate low PR and under-estimate high PR
because low and high pulse rates are under-represented in the training
dataset. We suppose that this observation is a direct consequence of
the dataset imbalance. The model tends to produce predictions oriented
towards mid-PR values. The PR difference is therefore positive for low
PR and negative for high PR.

4.2.2. Impact of skin tone and gender

MMSE-HR was selected to assess the generalizability of our method
to different skin tones. This dataset is more diverse in terms of eth-
nicity (including black, white, Asian, and Hispanic/Latino) compared
to UBFC-rPPG [40] and MAHNOB-HCI [39], which are highly biased
towards lighter skin. Following the protocol employed by the authors
of [68], which is based on the Fitzpatrick scale [69], we divided the
database into 4 categories according to skin tone type. In addition to
types III and IV, we grouped skin types I + II and V + VI together as
there were relatively few subjects in these categories. The predictions of
X-iPPGNet for different skin tones are reported in Table 7. The proposed
technique exhibits great performance for all skin types and relatively
less for dark skin, considering that participants with darker skin tones
are underrepresented in the training set.
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Fig. 6. Bland-Altman plot showing the differences in pulse rate between ground-truth
and estimated values plotted against the ground-truth measurements for the MMSE-HR
dataset (see Section 3.1). Mean values are represented by black dash-dot lines and
95% limits of agreement (1.96 SD) by red dashed lines.

Table 7

PR MAE, RMSE and r for our method by skin type on MMSE-HR.
5,43

MAE (bpm)

Skin Type Catepory

Fitzpatrick I+11 111 v V+VI
Skin Types
MAE (bpm) 4.17 3.94 4.52 5.43
RMSE 5.31 5.18 5.76 6.82
(bpm)
T 0.87 0.81 0.84 0.40
Table 8
Performance of our method on MMSE-HR by gender.
Gender Male Female
MAE (bpm) 3.74 4.53
RMSE (bpm) 4.76 5.84
r 0.79 0.85

We further evaluated the impact of gender on pulse rate estimation.
The results obtained show differences in performance between males
and females (see Table 8). This confirms the results of previous study
showing a slightly lower error rate for males than for females [8].

4.2.3. Impact of head movement

Visual pulse rate estimation in unconstrained environments remains
a challenging task. Besides skin color and environmental conditions,
head movements and facial expressions should be considered to build
a robust pulse rate measurement system. Pulse rate estimation error for
videos with stable subjects and those that include facial expressions and
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Table 9
Performance of our method on MMSE-HR under different head movement
conditions.

Head movement conditions Stable Large movement
MAE (bpm) 3.88 4.44
RMSE (bpm) 4.91 5.74
r 0.86 0.82
Table 10

The time window size of the input video fragment in
state-of-the-art methods.

Method Time window size
DeepPhys [7] 30s
Siamese-rPPG [50] 20 s

CHROM [52] 10 s

POS [5] 10 s

SynRhythm [70] 10 s

RhythmNet [8] 10 s

2SR [4] 6s

EVM-CNN [46]
PhysNet [15]
rPPGNet [33]
PRNet [32]
3DCNN [34]
X-iPPGNet (Ours)

4/6/8 s
2/4(best)/8 s

2 s (64 frames)
25 (60 frames)
2 s (60 frames)
2 s (50 frames)

head movements has been computed in order to assess how rigid move-
ments (e.g., head tilt and posture changes) and non-rigid movements
(e.g., facial expressions) affect the performance of X-iPPGNet. The
results are presented in Table 9. We observe a performance degradation
for large movements compared to stable videos but the error remains
acceptable.

4.2.4. Time window size

The time window size is an important parameter for video-based
pulse rate estimation. Previous studies have reported that a longer
window size leads to better performance, especially when using band-
pass filter operation or power spectral density [15,46]. However, this
increases the computational cost which is not suitable for real-time
applications. Indeed, there is a trade-off in the size of the time win-
dow. If the time window is too large, the predicted pulse rate loses
instantaneous information as we average pulse rates in the concerned
video fragment. Conversely, the input video fragment may not contain
a full cycle of two consecutive beats, resulting in an inaccurate pulse
rate estimate. Table 10 presents the window size selected in this work
in addition with state-of-the-art methods. All previous studies present
much longer time windows than our method, except PRNet [32],
3DCNN [34], and rPPGNet [33]. These methods used a 2-seconds video
fragment to estimate pulse rate, but with a higher number of frames.

Table 11 presents computation time and accuracy by window size.
It is clear that increasing the window size implies more input images
and more trainable parameters, thus increasing computation time. The
same applies to accuracy where MAE and RMSE raise with increasing
time windows, except for 1-second window which does not cover the
low-frequency interval. For this reason, the 2-seconds window has been
carefully selected to have a complete cardiac cycle and to cover the
entire pulse rate range. Computation times of the methods that use a
2-seconds window is reported in Table 12. X-iPPGNet achieves 140 ms
inference time behind PRNet [32], which runs the fastest among the
six methods. X-iPPGNet is however deeper and outperforms PRNet in
terms of accuracy.

5. Discussion
This work has been undertaken to optimize and improve iPPG-based

systems for pulse rate estimation. Most existing studies extract the
iPPG signal using either conventional approaches [2,4-6,48,66] or deep
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Table 11
Performance and computation time of our method on MMSE-HR using different time
window sizes.

Window size 1ls 2s 3s 4s 6s
MAE (bpm) 10.21 4.10 6.41 7.75 8.13
RMSE (bpm) 12.89 5.32 7.98 9.77 10.02
Computation time (ms) 120 140 160 180 220
Table 12
Computation time of our approach com-
pared to state-of-the-art ~ methods that  use a
2-s input window size.
Method Computation time (ms)
rPPGNet [33] 230
PhysNet [15] 200
3DCNN [34] 155
LCOMS [37] 150
PRNet [32] 130
X-iPPGNet (Ours) 140

learning-based methods [7,8,15,16]. Pulse rate is usually computed as
the inverse of the average time difference between consecutive beats in
the time domain, or as the frequency with the highest power spectrum
energy in the frequency domain. Therefore, additional processing steps
such as peak detection, Fast Fourier Transform, or Power Spectral
Density are required. Moreover, the accuracy depends on the quality of
the iPPG waveform and on the accuracy of the main peaks detection.
Since publicly available databases are challenging and provide a large
number of corrupted and poor-quality PPG signals [38,39,71], this
directly affects the main peak location and consequently decreases the
accuracy.

The proposed approach corresponds to an end-to-end trainable neu-
ral network where pulse rate is directly predicted from facial video
recordings without separate iPPG signal recovery and with no prior
knowledge. X-iPPGNet merges iPPG signal extraction and pulse rate
prediction in one step. We rely on the ability of deep learning models to
implicitly learn useful information directly from raw data. The training
is fully supervised where each 2-seconds video fragment takes a ground
truth pulse rate obtained with a contact device as a training label.

The main advantages of the proposed approach lie in its simplicity
and low processing latency. A short time window is used to estimate
pulse rate (2 s, 50 video frames). The size of the time window has a
direct impact on performances. The larger it is, the higher the error,
especially when dealing with higher and sharply fluctuating pulse rates
(see Table 11). This is due to the loss of instantaneous information
since the pulse rate is estimated by the averaging operation over the
time window (As shown in Table 11). Moreover, our approach is more
suitable for real-time measurement. The architecture is based on the
Xception backbone that significantly reduces the number of parameters
and computational costs without any performance degradation.

Since the most important factor when dealing with deep learning-
based approaches is data, X-iPPGNet has been trained on BP4D+ to
operate accurately in challenging scenarios and enable more robust
training. BP4D+ provides a large amount of data and ethnic diversity,
as well as challenging conditions. Furthermore, data augmentation is
applied to increase the amount of under-represented samples at high
and low frequencies. Using such a database in conjunction with data
augmentation allows automatic learning of iPPG without hand-crafted
features. Additionally, advanced deep learning optimization techniques
as well as regularization strategies used in our work help to overcome
overfitting issues and improve the model generalizability to new data.

The above experimental results verify the effectiveness of the pro-
posed method and prove the possibility of measuring pulse rate directly
from facial videos without going through iPPG signal recovery. Test
results on three benchmark databases outperform existing methods and
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reveal the generalization ability to new data. We also examined the im-
pact of various factors on prediction errors. The evaluation shows good
performance in less-constrained scenarios such as head movement,
illumination, video compression, and for different skin tones.

5.1. Limitations

The main limitation of our method concerns the way the pulse
rate is measured. Although the framework is end-to-end trainable and
superior in terms of speed and simplicity, pulse rate prediction with-
out going through iPPG signal extraction does not allow pulse wave
features extraction which is useful in medical applications [1] or for af-
fective state recognition [72]. Furthermore, we have identified several
issues that can be improved in future studies. First, most publicly avail-
able databases are very limited in terms of amount of data [40,73,74].
This lack of data makes training deep learning models more difficult
and therefore increases the probability of overfitting and decreases the
ability to generalize to new data. Although a few large-scale databases
are available [38,39,71], they are not very diverse and are highly
skewed towards light skin tones and mid-pulse rates. This leads to a lack
of generalization and poor performance for under-represented samples.
Using synthetic data [34,70,75,76] or combining multiple datasets [77]
can solve the problem of the limited amount of data while applying
advanced data augmentation strategies can improve performances for
under-represented samples by creating additional and different training
instances. Secondly, we noticed a high rate of corruption and poor qual-
ity ground truth PPG signals in the databases we used [38-40]. Data
preparation and cleaning are essential to properly train the network and
avoid overfitting problems. Finally, existing networks often consist of
a large number of parameters and require high computational costs,
which greatly hampers their application on resource-limited devices
such as mobile phones.

6. Conclusion and future works

In this paper, we proposed a novel one-stage approach (X-iPPGNet)
for contactless pulse rate estimation from facial video recordings using
a deep spatio-temporal network. This approach is an efficient and
elegant way to predict pulse rate without separate iPPG signal ex-
traction and with no prior knowledge. X-iPPGNet is inspired by the
Xception network architecture, which has proven to be efficient for
general-purpose 2D image tasks in terms of accuracy, fast conver-
gence speed, and low computational cost. Our extensive experiments
showed the effectiveness of the proposed architecture, which achieves
higher accuracy and outperforms existing methods on three popular
benchmark datasets such as MMSE-HR, UBFC-rPPG, and MAHNOB-
HCI. The results of this study demonstrated that pulse rate can be
estimated remotely from facial videos without the need for complicated
hand-crafted features or iPPG signal extraction.

Looking forward to our future work, we intend to compare the
performance between our one-stage-based approach and two-stage-
based methods. We will further analyze the effect of combining real
and synthetic data on performance. Furthermore, we envisage inves-
tigating lightweight networks to develop a faster and more suitable
model for real-time applications. We would also like to investigate the
effectiveness of the proposed approach for measuring other physiolog-
ical parameters, such as blood pressure, respiratory rate, and oxygen
saturation.
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Abstract

BACKGROUND. The remote measurement of physiological signals from
video has gained a particular attention over the last past years. Estimating
cardiovascular parameters like oxygen saturation and arterial blood pressure
(BP) is covered by a limited volume of studies and remain a very challenging
issue. Recent attempts demonstrated that BP can be estimated from facial
video but under very controlled scenarios or with moderate performances.
The data used in these works have not been publicly released or were gathered
in a clinical setting. METHODS. We, in contrast, propose a framework for
estimating BP from publicly available data in order to allow replication and
to facilitate fair comparison. We developed and trained a deep U-shaped
neural network to recover the blood pressure waveform from its imaging
photoplethysmographic (iPPG) signal counterpart. The model predicts the
continuous wavelet transform (CW'T) representation of a BP signal from the
CWT of an iPPG signal. Inverse CWT transform is ultimately computed to
recover the BP time series. RESULTS. The proposed framework has been
evaluated on 57 participants using international standards developed by the
AAMI and the BHS. Results exhibit close agreement with ground truth BP
values. The method satisfies all standards in the estimation of mean and
diastolic BP (grade A) and nearly all standards in the estimation of systolic
BP (grade B). CONCLUSIONS. This is, to the best of our knowledge, the
first demonstration of a deep learning-oriented framework that manages to
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predict the continuous blood pressure waveform from facial video analysis.
Codes developed during the study are publicly available (https://github.
com/frederic-bousefsaf/ippg2bp).

Keywords: imaging photoplethysmography, blood pressure, continuous
wavelet transform, deep learning, U-Net

1. Introduction

Research on the remote measurement of physiological signals and cardio-
vascular parameters from facial video has made significant progress the last
past years. The field is booming and supported by several significant stud-
ies [I]. The principle, termed imaging (or remote) photoplethysmography
(iPPG), consists in measuring the subtle fluctuations of skin color. These
fluctuations reflect complex light-tissue interactions. The simplest cameras
(webcams) to the most advanced ones (professional, laboratory or industrial
cameras) can be employed to reliably recover iPPG signals. Different regions
of interest (ROI) have been studied over time but the face remains the most
frequently observed area [2]. Several studies demonstrated that pulse rate
and its variability can be robustly and precisely estimated with conventional
image processing techniques and, more recently, with deep learning solutions
|3, [4].

Current research in this field is now directed towards the measurement
of new physiological parameters such as oxygen saturation [5] and blood
pressure [6]. Estimating arterial blood pressure (BP) from video is cov-
ered by a limited volume of studies and remain a very challenging issue.

iPPG signal reconstructed BP signal

T
|
Uil LELEIuLY
i — 0w J
L <
CWT UL U-Net with pretrained i1 reconstructed CWT
(real and imaginary parts) | backbones (real and imaginary parts)

Figure 1: General overview of the method.
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Two research directions are considered. First, measurement of the pulse
transit time (PTT) on single [7] or several [§] ROI. PTT is a parameter
considered to be correlated with blood pressure. Secondly, analysis of the
iPPG signal waveform [6, [9]. To our knowledge, deep learning techniques
have only been considered by Schrumpf et al. for the estimation of blood
pressure from iPPG signals [I0]. The model includes 5 layers and exhibit
moderate performances, i.e. high mean average error and no compliance
with international standards. These recent attempts demonstrated that BP
can be estimated from facial video but under very controlled scenarios or
with moderate performances. In addition, the data used in these works
have not been publicly released or were gathered in a clinical setting. Only
Schrumpf et al. released a sub-part of the data employed in their study. At
the time of writing, this subset includes small excerpts of iPPG signals and
discrete BP values from 17 over 50 participants (see https://github.com/
Fabian-Sc85/non-invasive-bp-estimation-using-deep-learning). To
conclude on this point, training an artificial neural network that accurately
estimates blood pressure from video is constrained by the amount of available
data because few public databases exist.

We propose, in this article, a framework for estimating BP from publicly
available data. The dataset, namely BP4D+-, includes video streams of mov-
ing participants. Video analysis dedicated to remote physiological sensing
is therefore very challenging. A deep learning-oriented method (see figure
has been specifically developed to recover the blood pressure waveform
from its imaging photoplethysmographic (iPPG) signal counterpart. The
deep U-shaped model presented in this work has already been applied for
translating iPPG to contact PPG signals in a previous work [II]. The full
pipeline includes several stages. Skin pixels are first extracted using a recent
segmentation techniques that relies on fully convolutional networks. iPPG
signal is computed by averaging all the skin pixels from the green channel.
We then employed the continuous wavelet transform (CWT) of iPPG (and
respectively BP) signals to train the aforementioned neural architecture. The
model therefore predicts a CW'T representation of a BP signal from the CW'T
of an iPPG signal. Inverse CW'T transform is ultimately computed to recover
the BP time series.

The article includes five additional sections. Section [2] presents the back-
ground and related works. Section |3|introduces the used data and the devel-
oped methodologies. The full processing pipeline is detailed in this section.
The metrics and results of the proposed approach are presented and discussed
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in sections [ and b} respectively. We present the future works and a summary
of the contributions in section

This is, to the best of our knowledge, the first demonstration of a deep
learning-oriented framework that manages to predict the continuous blood
pressure waveform from iPPG signals computed using publicly released data.
Several avenues of interest are envisaged to improve this research that, in its
current state, exhibits very encouraging results. Two out of three estimated
measures (i.e. diastolic BP and mean BP) already satisfy metrics defined by
international standards.

2. Related works

A survey related to blood pressure estimation from video has recently
been proposed by Lu et al. [12]. Several studies of interest have nevertheless
been proposed since its publication. We therefore, and in the two first sub-
sections, propose to review the studies that exploit iPPG for blood pressure
assessment using both conventional and deep learning approaches. The esti-
mation of blood pressure from contact PPG is closely related to this topic.
We therefore dedicate the last subsection to this part.

2.1. iPPG for blood pressure estimation from propagation time

Systolic and diastolic blood pressures have been estimated using the prop-
agation time of pulse waves from two different skin areas (typically hand and
face) in video recordings [I3] 14}, 15 8]. The positional of the two skin areas
must be maintained during the measurement. This approach is therefore very
restrictive. In this context, the time delay must be robustly assessed. Dedi-
cated techniques were proposed for this purpose the last past years. Shao et
al. compared peak locations from iPPG signals measured from two sites [16].
To improve accuracy, the peaks were estimated with two linear curves fitted
on the edges of the rising and falling parts of the signal. Fan and Tjahjadib
[17] analyzed the wave peaks with a custom signal quality index. Peaks of
low confidence are removed using a Kalman filter to improve performances.
Sugita et al. proposed to analyze videos of human hands recorded at differ-
ent heights from the heart [I8]. They analyze the difference in amplitude of
iPPG pulse waves to build a model that estimates SBP.

2.2. 1PPG@ for blood pressure estimation from single facial region
The estimation of BP from a single facial region is covered by very few
studies in the scientific literature. The general approach, inspired from the

4



contact PPG field [19] 20], consists in computing waveform features that are
correlated to BP. In this direction, Djeldjli et al. recently showed that tempo-
ral, derivative and area features computed from iPPG and ¢cPPG waveform
evolve similarly [21].

Jain et al. developed a simple regression framework that analyzes 21
waveform features computed on the iPPG signal to estimate BP [22]. Sugita
et al. proposed to quantify the degree of distortion of iPPG signals [7]. They
showed that this quantity exhibits correlation with BP close to correlations
computed between BP and propagation times. Viejo et al. estimated BP
from video using handcrafted features and machine learning models [23].
They studied the evolution of BP using a shallow neural network in the
context of food sensory responses but no direct BP assessment is presented
in their article.

The seminal work from Luo et al. [6] presents for the first time a pipeline
that includes an artificial intelligence model. A multilayer perceptron has
been fed with 30 features computed from iPPG waves. Their results show
that iPPG waveform extracted from video exhibits information that are cor-
related to BP. Combining handcrafted features from iPPG signals with a ma-
chine learning approach to estimate systolic and diastolic BP has also been
investigated by Rong and Li [9]. Deep learning architectures were recently
studied by Schrumpf et al. [I0]. The authors fine-tuned a network that
integrates convolutional, long short-term memory and dense layers. They
conclude that iPPG signals computed from standard RGB video streams
may not be suitable to reliably estimate BP. All these studies pointed out
the feasibility of remote BP monitoring from facial video but showed that
there is still room for improvements and that the estimation remains a very
challenging issue. A synthetic overview of the existing studies is presented
in table An important disparity in the number of subjects as well as
overall low performances can be observed from this table. In addition, all
the results presented in these studies have been tested on data that has not
been released. To the best of our knowledge, no research dedicated to the
estimation of blood pressure from iPPG has yet been conducted with public
datasets.

2.3. Blood pressure estimation from contact PPG

Estimating absolute BP values from contact PPG (cPPG) remains a chal-
lenging problem even if there is clear evidence that the fluctuations in BP
are reflected in cPPG signals |19, 20].



Deep learning techniques have recently been investigated [26] and re-
cent developments show that these frameworks can effectively be deployed
to convert BP waveform from cPPG signals. Different type of artificial neu-
ral architectures have been proposed the last past years. They combine
fully connected [27] or convolutional layers [28] with long short-term mem-
ory. Simultaneous estimation of systolic and diastolic BP is ensured by these
networks. Demographic features (e.g. weight and height) have addition-
ally been included in machine learning algorithms to improve BP estimation
from ¢PPG signals [29]. Time, frequency and time-frequency features were
computed from the PPG and their derivative signals. Feature selection tech-
niques were used for reducing the computational complexity and simultane-
ously decreasing the chance of over-fitting the machine learning algorithms.

Number of | Sampling | iPPG signal Performances
subjects freq. (fps) | extraction Features Model SBP DBP Ref.
17 140 Green Tpy index — -0.67 — 7
45 50 PCA 21 time and regression 3.90" £ 5.37 | 3.72" £ 5.08 | [22]
frequency features
45 15 Green amplitude, freq. shallow ANN - - 23]
and pulse rate)
155 features 0.677 0.637
1328 30 Tor (30 after PCA) ANN (MLP) 0.39* £ 7.30 | -0.2" £ 6.00 161
] 26 features (16 after 9.97% 7.59%
189 30 Green feature selection) SVR 21" £3.35 | 0.79* £ 2.58 1]
CNN-LSTM-Dense
25 32 POS - (transfer learning 13.6* 10.3% [10]

using MIMIC III)

Table 1: Overview of the existing studies in the field of BP estimation from single facial
region in video streams.

*: bias

t: correlation coefficient

¥ Mean Absolute Error (MAE)

ANN: Artificial Neural Network

CNN: Convolutional Neural Network

Green: iPPG signal formed using only the green channel [24]
LSTM: Long Short-Term Memory

MLP: MultiLayer Perceptron

PCA: Principal Component Analysis

POS: Plane-Orthogonal-to-Skin method [25]

SVR: Support Vector Regression

TOI: Transdermal Optical Imaging [6]




A similar framework but with a deep architecture with residual connections
has been proposed by Slapnicar et al. [30]. A part of the network is dedi-
cated to the analysis of the spectral representation of the signal using gated
recurrent units. Deep learning networks that manage to predict the contin-
uous BP waveform from ¢PPG signals have recently been proposed [26]. An
approximation network learns a rough approximation of the BP waveform
while a refinement network further enhances the preliminary estimate. The
approximation and refinement networks are based on a U-Net architecture
[31].

3. Methods
3.1. Database

BP4D+ is a multimodal dataset publicly available to the research commu-
nityﬂ. The database initially includes the physiological, thermal, 2D video,
3D and different metadata and annotations of 140 participants [32]. Ten
tasks were proposed to elicit different emotions in a lab environment.

Because of the nature of the tasks, strong motion artifacts are present
alongside an ensemble of videos, leading to difficult iPPG signal extraction.
Video analysis for remote physiological sensing is therefore very challenging.
We conducted a first selection process where only videos presenting clear
iPPG signals have been kept. The procedure relies on a conventional signal-
to-noise ratio (SNR). The index is defined using the Fourier transform of
iPPG signal in 15-second windowed intervals so that sub-parts of partially
impacted videos can be selected. The SNR has already been used in the
field of iPPG [33, 34]. All the selected video parts have been manually
controlled after this first automatic preselection. A subset of 57 subjects
(21 females, 36 males), leading to a total of 157 videos, has been built. We
additionally removed samples where the reference continuous blood pressure
signal was improperly constituted or flawed (negative values). Details about
the selected participants and tasks are available on a dedicated file in the
website hosting the project (https://github.com/frederic-bousefsaf/
ippg2bp). This subset has been employed for training and testing the neural
architecture presented in this study.

'http://www.cs.binghamton.edu/~1ijun/Research/3DFE/3DFE_Analysis.html
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Each signal (for each participant and for each task) has been processed
using the different techniques detailed in section [3.2 Each full-length sig-
nal has been split in excerpts of 2.56 seconds defined over 256 values. This
constituted a dataset of 4123 portions of signal. About 70% of the data
(2887 randomly selected excerpts) has been reserved for training, 15% (618
randomly selected excerpts) for validation and the remaining 15% (618 ran-
domly selected excerpts) for the testing phase. The different sets contain a
balanced portfolio of the participants and tasks.

We computed systolic BP (SBP) by averaging the intensities of the max
peaks over the entire excerpt. Diastolic BP (DBP) has been computed with
a similar strategy but using the min peaks intensities instead of the max
ones. Mean arterial pressure (MAP) is the average value computed over all
the excerpt samples. The distribution of SBP, DBP and MAP values for the
training, validation and test sets are presented in figure 2] The distributions
share similar properties and ranges.

Training set Validation set Test set
@ 500 - @ - @ 150 = -
B 400 ; [ oep| | = 100 | [ osp B _ [ osp
E [Tmap E i [map E o0l [map
& 300 Hisep|| & ser|| &% (E
k=] | k=] =0 k=]
5 200 5 5 50l
g100 L 2 ' = ] £
g fi] _TTJ{ i II[ﬂh g fi] .':|H AL H—I— — g o il . 1. ||—|_|_. .
50 100 150 50 100 150 50 100 150
Blood pressure (mmHg) Blood pressure (mmHg) Blood pressure (mmHg)

Figure 2: Distribution of DBP, MAP and SBP for the different sets. All the samples were
extracted from the BP4D+ dataset.

3.2. 1PPG signal constitution

The overall processing pipeline is quite similar to the one presented in
[I1]. This method (called iPPG 2c¢PPGQG) consists in employing the contin-
uous wavelet representation (real and imaginary parts) of an iPPG signal
to reconstruct the wavelet representation of a contact PPG (cPPQG) signal.
Inverse transform is then computed to recover the cPPG time series.

First, we employed a recent face segmentation technique that relies on
fully convolutional networks [37]. The approach robustly removed the back-
ground and non-skin areas. The method has recently been employed in the
field of imaging photoplethysmography [38].



iPPG signal has been computed by averaging all the remaining skin pixels
from the green channel. Figure [3a exhibits a raw iPPG signal computed from
one of the BP4D+ video stream. Raw iPPG signals are then interpolated
at a sampling frequency of 100 Hz and detrended using a specific low-pass
filter [35] based on a smoothness priors that attenuates low frequencies [36].

— iPPG

Fmm————

Figure 3: Signal processing before CWT computation. (a) Example of a raw iPPG signal
that contains noise and trends (top illustration) and of a BP signal that has been simulta-
neously recorded using a continuous non-invasive sensor (bottom illustration). (b) iPPG
trends removal is ensured by a method [35] that has already been used in this field [36].
(c) Small excerpts of 2.56 seconds are extracted for further processing. (d) The CWT
(real part) of both iPPG and BP signals is computed in the frequency range [0.6, 4.5] Hz.
(e) The average value is lost when computing the CWT in the aforementioned frequency
range. This information is therefore directly encoded in the CWT of the BP signal by
adding the mean value to every CWT coefficient. See the the difference in the ranges of
the colorbars between subfigures (d) and (e). (f) The CWT (real and imaginary parts)
are used for training the neural architecture presented in section @

(f) Training



Figure [3b shows the impact of the detrending operation on the iPPG signal.
We then extract small excerpts for both the iPPG and the ground truth BP
signals (see figure [3c for a typical example). An overlapping sliding window
scheme has been selected to increase the volume of data employed during
training. The sampling frequency of the interpolated iPPG signal being set
to 100 Hz, 2.56 seconds are necessary to form time-frequency representations
of 256 pixels in width. The window length has therefore been set to 2.56
seconds with an empirically defined step size of 0.5 seconds (50 samples). All
the iPPG excerpts have been standardized using the z-score formula (so that
= 0and o = 1). Training, validation and testing sets were then constituted
from this ensemble of excerpts (see section [3.1).

Like in [11], we employed the continuous wavelet transform (CWT) rep-
resentation to train the neural architecture presented in section The
global approach is depicted in figure [3f The CWT (equation [1)) of a signal
x (t) corresponds to a time-frequency representation computed from a proto-
type function commonly called mother wavelet. Unlike the Fourier transform,
the wavelet transform can detect abrupt changes in frequency using a family
of wavelets ¢, s (equation [2)) computed from the mother wavelet 1.

CWTY (r9) = [ 20 0
1 t—rT1
e 0= =0 () 2)

1, s corresponds to the mother wavelet dilated by s and translated by
7. Dilating the wavelet allows the transform to analyze larger portions of
signal in the time domain, thus covering lower frequencies. Different mother
wavelets have been developed and the choice depends mainly on the appli-
cation and the properties of the signal. The Morlet mother wavelet used in
this study was already used in previous work related to the analysis of PPG
signals by camera [39] 40, [1T].

The original signal z (¢) can be reconstructed by the inverse transform:

Cw/ / —OWTw (r, ) \/%'w <t;T>dT ds (3)

~[3 ()|
- [ g

10

d¢ < oo (4)



Cy is the admissibility condition and @/A) is the Fourier transform of .

The continuous wavelet transform was computed on each iPPG and BP
signal in the frequency range [0.6, 4.5] Hz, which corresponds to the physio-
logical range of the human heart rate [2]. Typical iPPG signal, BP signal and
their respective wavelet representations (real part) are presented in figure
As it was presented before, the iPPG signals have been standardized (= 0
and o = 1, see top-left illustration in figure {4 for a typical example). This
type of process has not been applied to the BP signals because we need to re-
cover both the average, systolic and diastolic values (see top-mid illustration
in figure {4)). The average value being lost when computing the CWT in the
frequency range [0.6, 4.5] Hz, we chose to directly encode this information in
the CWT of BP signals by adding the mean value to every CW'T coefficients
(see figure B):

CWTgp =CWTgp+ upp (5)

Here, ugp corresponds to the average value of a BP signal (top-mid il-
lustration in figure {4 for a typical BP signal example) and CWTgp to its

iPPG signal Ground truth BP signal Reconstructed BP signal
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CWT of iPPG signal CWT of ground truth BP signal

CWT predicted by the U-Net network

w S

n

Frequency (Hz)
Frequency (Hz)
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Figure 4: AniPPG and its corresponding ground truth BP are respectively presented in the
bottom-left and bottom-mid figures. Their corresponding CWT (real part) are presented
below. The transform (a complex image with a real and imaginary part) is computed in
the frequency range [0.6, 4.5] Hz. Figures on the right present the CWT predicted by
the neural network and the corresponding reconstructed BP signal, computed using the
inverse CWT transform.
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corresponding CWT (see bottom-mid illustration in figure [4]).

The produced wavelet representations have a dimension of 256 x 256 x 2
pixels. They are used to train the neural architectures (figure |3f) presented
in the next section.

3.8. Neural architectures

The neural architecture has already been developed and tested in previ-
ous work [TT]. Briefly, it consists in a U-Net architecture, which was initially
proposed by Ronneberger et al. [31], enhanced by a backbone. This type of
network has been widely used for segmentation of medical images [41]. Its
architecture consists of a descending (encoder) branch completed by an as-
cending (decoder) branch, giving a U-shape to the network. The descending
branch contains an ensemble of convolution and pooling layers. The ascend-
ing branch integrates upsampling layers connected to the convolutions of the
descending branch. Connections help to restore the spatial information. A
schematic representation of the network is provided in figure Each con-
volutional layer are coupled with a Rectified Linear Unit (ReLU) activation
function.

A Backbone (e.g. VGG16) can be integrated into the encoder part of
the U-Net network. Its internal parameters can be blocked during train-
ing, meaning that the weights of the network remain the same. In prac-
tice, a backbone correspond to a model subpart pre-trained on ImageNet,
a database deployed for object recognition tasks in images [42]. Training a
U-Net network supported by a backbone consists, in this case, in optimizing
the internal parameters of the decoder part. This approach can be associated
to a transfer learning strategy. In this work, we initialized the U-Net archi-
tecture with a ResNeXt101 backbone [43]. The encoder parameters were
not blocked during training, meaning that they were optimized during the
learning phase. The number of variables to be trained (weights and biases)
is 52 million. We chose ResNeXt101 because it performed better than other
standard backbones on the reconstruction of contact PPG signals from non
contact ones through their continuous wavelet representation, a problem that
is in fact quite similar [1T].

Conventional regularization techniques (e.g. dropout) have not been in-
troduced while a normalization scheme (i.e. batch normalization) has been
employed. Linear activation function was specified because the targeted task
corresponds to a regression in the form of a pixel-to-pixel reconstruction of
a two-channel wavelet representation.
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Figure 5: Overview of the U-Net [31] proposed in this study, which includes encoder (down-
sampling) and decoder (upsampling) portions. The encoder is replaced by a ResNeXt101
backbone [43]. ResNeXt and decoder blocks are detailed on the right-side of the figure.
The input of a ResNeXt block (256 dimensions in the example depicted in the figure)
is split into 32 lower dimensional branches (or paths) that will next be merged through
concatenation. This architecture exploits Inception’s split-transform-merge strategy but
with a uniform topology. The parameters of each stage inside this ResNeXt block example
are respectively the number of input filters, the filter size and the number of output filters.
Each ResNeXt block present different parameters. They are specified in [43].

The input dimensions of a U-Net network supported by a backbone are
fixed by the data used for their training (256 x 256 pixels RGB images from
the ImageNet database). The inputs being in our case a two-channels wavelet
representation, an adaptation strategy must be introduced. We employed an
additional 2D convolutional layer with a (1,1) kernel that has been placed
between the input layer and the encoder part of the network. The neurons
of this layer allow conversion of the input from N to 3 channels. The weights
of all the networks have randomly been initialized by the method proposed
by Glorot and Bengio [44]. Biases are initialized to zero. The Mean Squared
Error (MSE) has been selected as loss for training all the models:
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1 N2
MSE=—%" (CWTM - CWTm) (6)
2y}

CWT corresponds to the wavelet transform (see figure [3|) of the ground
truth BP signal. CWT is the wavelet representation predicted by the neural
network starting from the wavelet representation of the iPPG signal.

The architecture implementation was carried out under Python using
Keras API and Tensorflow library. The Segmentation Models library [45]
proposed by P. Yakubovskiy was used to develop the neural network. The
training sessions were launched over 500 epochs through batches of 16 images.
We used, in this study, the Adam optimization algorithm [46] with a learning
rate of 0.001. A dedicated computer equipped with a dual Intel Xeon Silver
4114 and two Nvidia Quadro P6000s was used to carry out network learning.

4. Results

The proposed U-Net architecture transforms an iPPG signal to a con-
tinuous BP signal through their wavelet representation. Figure [ illustrates
a typical example of BP estimation (top-right figure) from an iPPG wave
(top-left figure). The predicted waveform closely follows the ground truth
BP wave presented in top-mid figure. The shape and magnitude, which were
initially different, have been preserved. We can notice small phase differ-
ences in the wavelet representations of the iPPG signal (bottom-left figure)
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Figure 6: Typical BP signals reconstruction for several pulse rate values. Top figures:
iPPG signals. Bottom figures: predicted and ground truth (GT) BP.
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and the ground truth BP signal (bottom-mid figure). The neural network
learned this specificity, the reconstructed wavelet representation (bottom-
right figure) being in phase with the ground truth one (bottom-mid figure).
The phase has therefore been properly recovered. This follows previous ob-
servations that we made when testing this U-Net to transform contact PPG
to iPPG signals [I1] and observations from other authors that employed deep
learning to convert contact PPG to BP waves [26].

Figure [6] illustrates several examples of blood pressure estimation from
iPPG signals. We evaluated the performances of the proposed technique with
international standards [47, [48] from the Association for the Advancement of
Medical Instrumentation (AAMI) and from the British Hypertension Soci-
ety (BHS). We, however, emphasize that BP4D+ contains videos and phys-
iological data that have not been recorded in a clinical setting. Also, the
constituted subset integrates 57 participants while the AAMI recommends
to evaluate BP estimation techniques on a minimum of 85 subjects.

4.1. General metrics and Bland-Altman plots

The Mean Absolute Error (M AFE, equation@ and the Root Mean Square
Error (RMSE, equatio have been used to quantify the level of agreement
between the predicted (BP) and the ground truth blood pressure (BP). We
computed these metrics for DBP, MAP and SBP over all the test set (see

section .

1l & —
MAE = E;IBPZ»—BBI (7)
1 « ——\2
RMSE = EZ(BR—BR) (8)

i=1

Table [2| presents a comparative analysis of results taken from similar
works. Bland-Altman representations have been computed for DBP, MAP
and SBP over all the test data. The average between the estimated and
ground truth BP values is depicted on the x-axis while the differences between
the estimated and ground truth BP values are depicted on the y-axis. The
resulting plots are presented in figure [[] Means are represented by dash-dot
lines and 95% limits of agreement (4 1.96 SD) by dashed lines. The ranges
of these limits are [-12.3 14.3], [-12.0 11.6] and [-19.6 16.6] for DBP, MAP
and SBP respectively.
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MAE (mmHg) | RMSE (mmHg)
. DBP 7.59 -
Rong and Li [9] SBP 9.97 B
DBP 10.3 -
Schrumpf et al. [10] SBP 13.6 B
DBP 5.1 6.85
iPPG2BP (our results) | MAP 4.47 6.01
SBP 6.73 9.34

Table 2: Blood pressure estimation errors. Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) have been computed between the estimated and ground truth DBP,
MAP and SBP. Results from similar studies are also reported.
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Figure 7: Bland-Altman plots for DBP, MAP and SBP prediction. Means are represented
by dash-dot lines and 95% limits of agreement (+ 1.96 SD) by dashed lines.

4.2. BHS standards

The BHS assesses blood pressure estimation techniques by their cumu-
lative percentage of errors [47]. Different grades are provided (see table [3)
according to the percentage of the predictions on the test samples that fall
under three empiric thresholds, i.e. 5, 10 and 15 mmHg.

Table [3] presents a comparative analysis of the BHS evaluation on our
results. We reported the values provided by Rong and Li [9] as it appears
to be the only study that computed BHS metrics. Our results exhibit good
overall performances with more than 60%, 87% and 95% of the test samples
having estimation errors less than, respectively, 5, 10 and 15 mmHg for both
DBP and MAP (grade A). More than 50% and 79% of SBP predictions fall
under 5 and 10 mmHg respectively (grade B) while 89.6% of SBP predictions
fall under 15 mmHg, which is slightly under the 90% threshold.

The conclusions drawn from the analysis of the results presented in table
are graphically presented in figure
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Cumulative Error Percentage
<5 mmHg | <10 mmHg | < 15 mmHg
DBP 55.4% 85.7% 98.2%
Rong and Li [9] SBP 48.2% 78.6% 94.6%
DBP 60.2% 87.1% 95.8%
iPPG2BP (our results) MAP 66.8% 90.9% 96.4%
SBP 50.2% 79.0% 89.6%
grade A 60% 85% 95%
BHS grade B 50% 75% 90%
grade C 40% 65% 85%

Table 3: BHS metrics for DBP, MAP and SBP prediction.
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Figure 8: Absolute error in DBP, MAP and SBP predictions. Dashed lines represent the
5, 10 and 15 mmHg thresholds recommended by the BHS.

4.8. AAMI standards

The AAMI proposes to assess blood pressure estimation techniques by
analyzing the mean error (ME) and the standard deviation of errors (SDE)
on the test set [48]. The former must be lower than 5 mmHg while the latter
must be lower than 8§ mmHg to fully respect the recommendation.

Table {| presents a comparative analysis of the AAMI evaluation on our
results. We additionally reported the values provided by Luo et al. [6] and
Rong and Li [9]. Our results exhibit good overall performances. Both DBP
and MAP satisfy the AAMI standards. They exhibit a small ME and a
SDE lower than 8 mmHg. Regarding SBP estimations, the ME condition is
fulfilled but the SDE is a bit higher (1.2 mmHg over the 8 mmHg threshold
defined by the AAMI).

The histograms of prediction errors for DBP, MAP and SBP are presented
in figure 0] The spread of these histograms gives a graphical picture of the
different SDE presented in [4| (narrower for MAP, wider for SBP).
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ME (mmHg) | SDE (mmHg)

DBP -0.20 6.00
Luo et al. [6] SBP 0.39 7.30
DBP 0.79 2.58
Rong and Li [9] SBP 2.1 3.35
DBP -1.001 6.781
iPPG2BP (our results) | MAP -0.205 6.007
SBP 1.51 9.221

\ AAMI standard \ <5 \ <8 \

Table 4: AAMI metrics for DBP, MAP and SBP prediction. ME: Mean Error; SDE:
Standard Deviation of Errors.
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Figure 9: Error in DBP, MAP and DBP predictions.

5. Discussion

The method presented in this paper corresponds to one of the few pro-
posals that relies on deep learning to estimate blood pressure from facial
video. We propose, in the next subsection, to discuss and compare our re-
sults with related works. Section presents the limitations of this study.
We ultimately present and discuss the results of a leave-one-patient-out cross-
validation procedure (section [5.3)).

5.1. About the results presented in this study

Regarding previous works, and to the best of our knowledge, only Rong
and Li presented Bland-Altman representations to assess their results. The
technique proposed by the authors seems to underestimate low BP values
and overestimate high BP values, both for DBP and SBP [9]. Our results
depict a similar tendency but with lesser impact, the Bland-Altman plots
presented in figure [7] being quite consistent across all the BP range. Table
presents a comparative analysis of results taken from similar works. The
technique proposed in this study performs better than the other methods in
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terms of MAE and RMSE. We, however, emphasize that the results reported
from other studies were computed from data of different nature. To the best
of our knowledge, these data are not publicly available.

Results presented in sections, [.2] and [4.3] exhibit a relevant level of agree-
ment between predicted and ground truth BP values. It can however be
observed that several BP predictions exceed the 15 mmHg threshold, in par-
ticular for SBP (see table[3). We emphasize that no other techniques focusing
on the analysis of BP from a single facial video have obtained grade B in SBP
prediction, in particular from challenging data. Techniques dedicated to the
conversion of contact PPG signals to the BP waveform [26] or from contact
PPG signals to DBP and SBP values [30] 28, 29] also produce SBP estima-
tions that are less relevant than DBP estimations. We do not report the
AAMI and BHS analysis from Schrumpf et al. because none of their results
seems to satisfy the requirements [10)].

Integrating the wavelet representation of iPPG signals instead of raw
iPPG signals in the network is a key-point of the method presented in this
study. We here take advantage of transfer learning through a ResNeXt back-
bone pre-trained on large databases [11]. U-Nets have been widely used for
segmentation of medical images and can be trained with a low volume of
data [41].

5.2. Limitations

Figure [10| presents a prediction of lesser quality where the mean BP value
is approximately estimated by the model. Apart from the mean error, DBP
and SBP seem to be properly estimated. Adding more data during the
learning phase of the network may solve, or at least minimize, this mean
error. Balancing the distribution of ground truth BP values while varying
the iPPG and BP waveform (shape of the signals) may be a relevant approach
to tackle this issue.

All the presented results are limited by the current dataset: a low per-
centage of subjects (<.85) has been used to derive the results presented in
section @l We point out that the reference blood pressure, gathered using
a continuous non-invasive sensor, has not been recorded in a clinical set-
ting. There might be irrelevant ground truth values, ultimately leading to
improper BP learning by the U-Net model presented in section [3.3] We also
emphasize that only videos presenting clear iPPG signals have been included
in the dataset. Videos with motion can lead to iPPG signals that contain
strong artifacts. This particular source of noise can negatively impact the
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Figure 10: Predictions of lesser quality. Top figure: iPPG signal. Bottom figure: predicted
and ground truth BP.

CWT coeflicients. Including noisy iPPG signals into the dataset will be the
objective of future works. Broaden the currently limited dataset is necessary
so that all types of noise are represented.

The data distributions presented in figure [2| are not well-balanced across
all the BP range. This can drastically impact training, in particular by negat-
ing the generalization power of the model (see next subsection). To tackle
this issue, the development of a smart overlapping selection could be a poten-
tial approach. It would consist in automatically increasing the overlapping
to produce more signals in the underrepresented BP ranges. We also empha-
size that data augmentation strategies were recently proposed in the field of
pulse rate estimation from video to improve the models performances [49).
These approaches are however not conceivable in the case of BP estimation
because removing frames or augmenting the videos with conventional trans-
formations may directly impact the shape of iPPG waveforms. Developing
an augmentation strategy towards the wavelet representations, by for exam-
ple adding random noise to the CW'T coeflicients, can here be an approach
of interest.

The distributions of the training, validation and test sets presented in
figure [2| contain a mix of all the participants data. In the next subsection,
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we analyze the impact of a leave-one-patient-out cross-validation procedure
on the performances.

5.3. Leave-one-patient-out cross-validation

Table |5 presents the assessment of BP using the method proposed in this
study (section [3) but under a leave-one-patient-out cross-validation proce-
dure (three folds). We can observe a decrease in performances over all the
folds, even if some values are close from the international standards rec-
ommendations. The Bland-Altman representations for DBP, MAP and SBP
over all data from the first fold are presented in figure[11] They exhibit wider
point clouds than those computed from the randomly distributed subsets (see
the Bland-Altman plots presented in figure [7]) where each set includes a bal-
anced portfolio of participants and tasks (details in section. We can also
observe that SBP predictions depicted in figure follow an inverse trend
than those displayed in figure [7] Here, the trained model overestimates SBP
in low BP values and underestimates SBP in high BP values. All these re-
sults exhibit a limitation in the generalization power of the network but are,
in contrast, encouraging because the model has been trained with limited
data.

It can also be observed, from table [5| that the model performed poorly
for SBP estimations of fold 2. After a closer look on the iPPG signals and
ground truth BP, we remarked that this decrease in performance was due to
a patient who presents the highest SBP values. All these patient signals were
included in the test and were therefore totally missing from the training set.
We therefore believe that the network did not learn the features relative to
these specific samples. As stated in the previous subsection, broadening the
dataset is a necessary step to improve generalization.

6. Conclusion and future works

We proposed, in this article, a deep learning-oriented solution dedicated
to the recovering of blood pressure from facial video. The reconstruction is
carried out using a U-shaped network supported by a ResNeXt backbone
from the time-frequency representation of the iPPG signal. To the best of
our knowledge, this study presents the first demonstration of an automatic
framework that manages to estimate the continuous BP waveform from facial
video. The approach corresponds to an efficient way for predicting BP with-
out a prior extraction of complicated hand-crafted waveform features from
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Errors (mmHg) BHS AAMI (mmHg)
MAE RMSE <5 | <10| <15 | ME SDE

8.28 11.78 49% | 3% | 83% | 4.23 10.99 DBP
1 7.52 10.66 50% | 76% | 86% 3.39 10.11 MAP
9.79 12.64 33% | 61% | 76% | 4.56 11.79 SBP
5.83 7.12 48% | 85% | 97% 0 7.12 DBP
2 8.03 10.24 43% | 65% | 87% 3.97 9.45 MAP
16.41 21.61 26% | 46% | 57% | 12.99 17.27 SBP
11.43 14.12 28% | 51% | 68% | -4.77 13.29 DBP
3 8.11 10.21 38% | 69% | 86% | -3.81 9.47 MAP
8.87 11.33 38% | 62% | 81% | -4.77 10.28 SBP

Fold

Table 5: Assessment of the proposed solution under a leave-one-patient-out cross-
validation procedure.
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Figure 11: Bland-Altman plots for DBP, MAP and SBP prediction under a leave-one-
patient-out, three folds, cross-validation procedure (only the results from the first fold are
presented here).

the iPPG signal. Our extensive experiments showed the effectiveness of the
proposed method, which achieves high accuracy and satisfies all international
standards in the estimation of mean and diastolic BP (grade A) and nearly
all international standards in the estimation of systolic BP (grade B).

Several ways of improvement for this work are considered. We first pro-
pose expanding the currently limited volume of data by increasing the num-
ber of included recordings and participants. We, in this study, conducted
a manual selection of videos that presented well-defined iPPG signals. This
step can be automatized using a quality index [I7]. Also, it has recently been
shown that data augmentation strategies can significantly improve the per-
formances of deep learning models dedicated to pulse rate estimation from
video [49]. Producing more overlapped signals in the range of low represented
BP values might be a first considered approach for re-balancing the dataset
distribution.
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The Morlet wavelet has been used as a prototype function for the compu-
tation of the CW'T. We propose evaluating the impact on performances with
different mother wavelets as well as investigating different time-frequency
representations like short-time Fourier and constant-Q) transforms.

Inputting directly the video stream in an end-to-end architecture rather
than the time-frequency representation of iPPG signal will be the subject of
long-term research. We also envisage to extend this work in the context of
blood oxygen saturation using a similar approach (inputting CWT represen-
tations of iPPG signals to a deep U-Net model).
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Abstract

Imaging photoplethysmography (iPPG) is an optical technique dedicated to
the assessment of several vital functions using a simple camera. Significant
efforts have been made to reliably estimate heart and respiratory rates. Cur-
rently, research is focusing on the remote estimation of oxygen saturation and
blood pressure (BP). The limited number of publicly available data tends to
restrict the advancements related to BP estimation. To overcome this limit,
we propose to split the problem in a two-stage processing chain: (i) con-
verting iPPG to contact PPG (¢cPPG) signals using available video dataset
and (ii) estimate BP from converted ¢cPPG signals by exploiting large ex-
isting databases (e.g. MIMIC). This article presents the first developments
where a method for converting iPPG signals measured using a camera into
cPPG signals measured by contact sensors is proposed. Real and imaginary
parts of the continuous wavelet transform (CWT) of ¢cPPG and iPPG signals
are passed to various deep pre-trained U-shaped architectures. Conventional
metrics and specific waveform estimators have been implemented to validate
the relevance of the predictions. The results exhibit good agreements towards
a large portion of metrics, showing that the neural architectures properly es-
timated cPPG from iPPG signals through their CW'T representations. The
performance indicates that BP estimation from iPPG signals converted to
cPPG signals can now be envisaged. Consequently, future work will focus
on the integration of models dedicated to BP estimation trained on MIMIC.
This is the first demonstration of a method for accurate reconstruction of
cPPG from iPPG signals satisfying pulse waveform criteria.

Keywords: imaging photoplethysmography, U-Net, blood volume pulse,
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pulse waveform

1. Introduction

In the recent years, research on contactless technologies dedicated to
physiological signals measurement have made significant progress [I]. Photo-
plethysmography (PPG) can be remotely measured by observing the subtle
fluctuations of skin color. These fluctuations reflect complex light-tissue
interactions, from which their origin is not fully agreed [2]. The simplest
cameras (webcams) to the most advanced ones (professional, laboratory or
industrial cameras) can be used to reliably measure PPG signals [3]. Dif-
ferent regions of interest (ROI) have been studied over time but the face
remains the most frequently observed area [4].

The field is booming and supported by several significant studies. Com-
puter vision, image processing and artificial intelligence (AI) methods have
been used or developed specifically to reliably transform input video into
biomedical parameters [4]. Numerous studies have shown that pulse rate
and its variability can be estimated with high robustness. In this context,
artificial intelligence is playing an increasingly important role [5] where the
most efficient pulse rate measurement methods are now based on deep neural
models [6]. These architectures are often based on convolutional layers [7]
and can be trained with synthetic data [§] reinforced by real data [9].

Current research in this field is now directed towards the measurement
of new physiological parameters such as oxygen saturation [10] and blood
pressure [IT]. They impact the amplitude and waveform of PPG signals over
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Figure 1: General overview of the method.



different wavelength ranges. Blood pressure estimation based on video analy-
sis is complex and very few works show its feasibility. Two research directions
are considered. First, measurement of the pulse transit time (PTT) on single
[12] or several [I3] ROL. PTT is a parameter considered to be correlated with
blood pressure. Secondly, analysis of the PPG signal waveform [I1]. To our
knowledge, deep learning techniques based on video analysis have not been
considered for the estimation of blood pressure yet.

Training an artificial neural network that accurately estimates blood pres-
sure from video is constrained by the amount of available data because few
public databases exist. Djeldjli et al. recently showed that temporal, deriva-
tive and area features computed from imaging PPG (iPPG) waveform and
contact sensor (placed on the finger or the ear) evolve similarly [14]. This
point is important because it motivates the present study. We envisage es-
timating BP with a two-stage processing chain. A model dedicated to the
conversion of iPPG signals to contact PPG (¢cPPG) signals using available
video dataset corresponds to the first part of the processing chain. The sec-
ond stage consists in constituting a deep learning model dedicated to blood
pressure estimation from these converted signals by exploiting large existing
databases (e.g. MIMIC [15]).

The developments related to the first stage are presented in this study.
To add more details, we propose to train a deep U-shaped neural archi-
tecture (U-Net) dedicated to the conversion of contact PPG signals from
imaging PPG signals simultaneously measured on the face by conventional
video analysis. Continuous wavelet representation of the signals is employed
to take advantage of transfer learning through pretrained backbones on large
databases. To the best of our knowledge, this is the first demonstration of a
method for accurate reconstruction of cPPG from iPPG signals.

The article includes five additional sections. Section [2| presents the back-
ground and related works. Section [3] introduces the used data and the de-
veloped methodologies. The metrics and results of the proposed approach
are presented and discussed in section [dl We present the future works and a
summary of the contributions in sections [5| and [6] respectively.

2. Related works

This section reviews the studies that exploit deep learning for iPPG anal-

ysis as well as conventional and deep learning approaches for blood pressure
assessment from both iPPG and cPPG.



2.1. Deep Learning for iPPG signal and pulse rate estimation

Relevant surveys in the imaging PPG field of research have been proposed
the last past years [IL B, 4]. They cover conventional techniques that gener-
ally include both image and signal processing approaches to improve PPG
signal-to-noise ratio and therefore the estimation of biomedical parameters
like pulse and breathing rates. Video and image processing operations like
face detection, tracking of region(s) of interest and skin segmentation have
been employed [16, 17, I8]. Constituting an iPPG signal from a sequence of
frames is usually carried out with a spatial averaging operation [19]). Stan-
dard signal processing techniques include blind source separation approaches
[20], Fourier and Wavelet, transforms [2I]. The impact of color space on pulse
rate assessment has also been investigated in previous research |22, [17].

The most recent studies present artificial intelligence through deep learn-
ing methods to automatically estimate the pulse signal or directly the pulse
rate. These approaches currently deliver the best performances and present
root mean squared errors between 2.7 and 3.8 beats per minute [5] on public
datasets like UBFC-RPPG [23], MAHNOB-HCI [24] and PURE [25]. Both
hybrid and end-to-end approaches have been investigated. Hybrid strate-
gies take either processed frames or iPPG signals as input and output the
biomedical parameters of interest. End-to-end models takes a video (sequence
of frames) as input and output the biomedical parameters.

Hybrid strategies combine conventional with deep learning methods. For
instance, Qiu et al. developed a three-stage pipeline including face tracking,
features extraction and finally pulse rate estimation based on a convolutional
neural network (CNN) [26]. Hsu et al. proposed a deep CNN trained to pre-
dict pulse rate based on the time—frequency representation of processed iPPG
signals [27]. Chen et al. proposed DeepPhys [28] and DeepMag [29], deep
CNN trained to respectively predict pulse wave and magnify color variations
produced by the periodic changes in blood flow. Inputs are transformed us-
ing a skin reflection model while the convolutional layers are guided using
attention masks to ensure the robust estimation of PPG signals under light-
ing fluctuation and motion. They used a modified version of VGG, a model
dedicated to object recognition in images [30].

End-to-end strategies were recently investigated through different neural
architectures: CNN-based extractor and estimator [31], 3D CNN [8], 32} B3],
combination of CNN and long short-term memory [32, 34], CNN and gated
recurrent unit [35], Siamese network including two branches with identical
structure that analyze two different facial regions [36] and temporal difference
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convolution [6]. These models have been trained with synthetic data [§]
reinforced by real data [9, 33]. They estimate the pulse signal [32] or directly
the pulse rate from a sequence of images.

Few studies investigated the interpretability and behavior of the models to
understand the representations learned by the features. Zhan et al. studied
this aspect by analyzing that CNN properly learn PPG during training [7].
They conclude that color variations produced by blood flow fluctuations are
correctly exploited by the neural networks.

2.2. Blood pressure assessment from iPPG

Both systolic and diastolic blood pressures (BP) have been estimated
using the propagation time of pulse waves from two different skin areas (typ-
ically hand and face) in video recordings [37, 38]. The positional of the two
skin areas must be maintained during the measurement. This approach is
therefore very restrictive. The scientific literature covers few studies dedi-
cated to the estimation of BP from a single facial region [39, 12l 40}, [41].
To the best of our knowledge, only the seminal work from Luo et al. [I1]
presents a pipeline that includes an artificial intelligence model. They feed a
multilayer perceptron with 155 features (reduced to 30 after principal com-
ponent analysis) computed from iPPG waves. Their results show that PPG
waveform extracted from video exhibits information that relates to BP. All
these studies pointed out the feasibility of remote BP monitoring from facial
video but showed that there is still room for improvements.

2.3. Blood pressure assessment from ¢cPPG

Based on the current literature, there is clear evidence that the fluctua-
tions in BP are reflected in ¢cPPG signals [42] [43] even if estimating absolute
BP values from cPPG remains a challenging problem. The changes in mor-
phological contours due to interaction of other physiological systems make
the extraction of features, and thus the estimation of BP, challenging but
achievable [44]. Exploration of deep learning techniques is here particularly
interesting because it allows overriding of handcrafted features [45]. These
features are somewhat restricted because the cPPG waveform fluctuates from
subject to subject and also because the filtering procedure can change its
morphology [46].

Several recent studies show that deep learning frameworks can effectively
be deployed to translate BP from ¢cPPG signals. Tanveer and Hasan proposed
to associate artificial neural network (ANN) with long short-term memory
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for BP estimation [47]. A similar network structure was proposed by Panwar
et al. in 2020 [48]. 1D CNN replace the ANN part from Tanveer and Hasan
architecture. The network concurrently estimates diastolic BP, systolic BP
and heart rate from a single cPPG signal. Chowdhury et al. then proposed
to employ machine learning algorithms dedicated to BP estimation using
cPPG signal and demographic features (e.g. weight and height) [49]. Time,
frequency and time-frequency features were extracted from the PPG and
their derivative signals. Feature selection techniques were used for reducing
the computational complexity and simultaneously decreasing the chance of
over-fitting the machine learning algorithms. Slapnicar et al. introduced a
similar framework but with a deep neural network architecture with residual
connections [50]. A part of the network is dedicated to the analysis of the
signal spectral representation using gated recurrent units. Ibtehaz et Raman
employed a deep learning based method that manages to predict the con-
tinuous BP waveform from ¢PPG signals. An approximation network learns
a rough approximation of the BP waveform while a refinement network fur-
ther enhances the preliminary estimate. The approximation and refinement
networks are based on U-Net [51].

3. Methods

3.1. Database and experimental protocol

The data used to learn the neural models (section have been presented
in a previously published article [I4]. 12 volunteers aged between 20 and 35
years participated to the study. The experiments were conducted in a dark
room where the only source of light was two Neewer LED panels (NL480)
set to 2700 lux / m with a color temperature of 3750 K (neutral white light).
During the experiments, they were asked to seat at approximately 1 meter
from a fast camera (16mm C Series Lens mounted on a EO-2223C Color
camera from Edmund Optics). The recorded sequences of RGB images were
save without compression at resolution 640 x 480 pixels (24 bits per pixel)
and with a frame rate of 125 frames per second. Autoexposure and white
balance have been disabled.

The ground truth cPPG signals were recorded using approved contact
probes (BVP-Flex / Pro. By Thought Technologies Ltd.) placed on the finger
and the ear. Two 60-second videos were recorded for every participant. First
video: participants were asked to stay calm and breathe normally. Second
video: participants were asked to hold their breath as much as possible, the
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Figure 2: Excerpts of participant #1 (collected during breath holding experiment). Top
figure: raw iPPG signals computed with a spatial averaging operation over the forehead
region [19]. Video recordings have been collected using a fast camera (125 frames per
second). Reference cPPG signals have been recorded with contact probes placed on the
finger (middle figure) and the ear (bottom figure).

objective being to cause physiological variations that modify blood pressure
and impact the recorded PPG signals. We refer the reader to the original
publication for more details concerning the procedure and the material used
[14].

The database contains 724 signals. Each of them contains 5 PPG waves
(more details in section defined over 256 values. About 80% of the data
(600 signals) were reserved for training and 20% (124 signals) for testing.
The sets contain a balanced portfolio of the different participants and tasks.
We evaluated the models relevance through k-fold cross-validation (k=5). A
fold contains 120 signals that are reserved for validation. The 4 remaining
folds include 480 signals that are employed for training the neural models.

3.2. Image and signal processing

The forehead corresponds to a relevant area of interest in terms of signal-
to-noise ratio [I7]. This region has been automatically detected with a model



composed of 68 points positioned on the main shapes of the face [52]. These
different points are tracked along the video. Some of them are used to find the
position of the forehead. In practice, algorithms for face and facial landmarks
detection included in OpenCV [[]and DIib [ libraries have been employed.

iPPG signals are computed by averaging all the forehead pixels from the
green channel. This technique has been used since the very first publications
related to the measurement of contactless PPG signals by camera [19]. The
raw iPPG signals are then detrended using a specific low-pass filter [53] based
on a smoothness priors that attenuates low frequencies [20]. We then robustly
detect the valleys to extract each PPG signal wave. Each signal is ultimately
sampled over 256 points and contains 5 successive iPPG waves. An excerpt
is presented in figure The ground truth cPPG signals measured at the
finger and the ear are also presented in this figure. All the signals have been
standardize (u =0 and o = 1).

In this article, we propose to exploit the wavelet representation of PPG
signals to train the different neural architectures presented in section
(figure [I). The continuous wavelet transform (equation [1) of a signal z (¢)
corresponds to a time-frequency representation computed from a prototype
function commonly called mother wavelet. Unlike the Fourier transform, the
wavelet transform can detect abrupt changes in frequency using a family of
wavelets 1, s (equation [2) computed from the mother wavelet 1.

CWTY (r,5) = / " ()t (1)dt 0
ret) = =0 (57 )

Y, s corresponds to the mother wavelet dilated by s and translated by
7. Dilating the wavelet allows the transform to analyze larger portions of
signal in the time domain, thus covering lower frequencies. Different mother
wavelets have been developed and the choice depends mainly on the appli-
cation and the properties of the signal. The Morlet mother wavelet used in
this study was already used in previous work related to the analysis of PPG
signals by camera [54].

Lhttps://opencv.org/
Zhttp://dlib.net/



The original signal z (¢) can be reconstructed by the inverse transform:

2 ( & / /oo —CWTY (7,5) \/lﬁdj <t - T>dT ds (3)

. 2
Lo
Y /o <

Cy is the admissibility condition and 1& is the Fourier transform of .

The continuous wavelet transform was computed on each PPG signal in
the frequency range 0.6, 4.5] Hz, which corresponds to the physiological
range of the human heart rate [4]. Wavelet representations of dimension
256 x 256 will be used to train the neural architectures presented in section
3,

Typical iPPG signal, cPPG signal and their respective wavelet representa-
tions (real, imaginary and absolute part) are presented in figure 3l A typical
difference in shape between both signals and in phase between their wavelet
representations can be noted: the real part of the iPPG signal starts with
a series of low intensity coefficients (blue pseudo-ellipse) while the real part
of the ¢cPPG signal starts with strong intensity coeflicients (yellow pseudo-
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Figure 3: The continuous wavelet transform of the iPPG signal (top figure) and cPPG
signal (ear or finger, see bottom figure for a finger cPPG signal) is computed in the
frequency range [0.6, 4.5] Hz. The wavelet representation of the iPPG signal (a complex
image with a real and imaginary part) serves as input for training the neural networks
presented in section The absolute of the continuous wavelet transform is depicted for
information and is not learned by the model.



ellipse). The neural network will learn this specificity during the training
phase.

8.8. Neural architectures

The U-Net neural architecture was initially proposed by Ronneberger et
al. [5I]. This network has been used for segmentation of medical images
[55]. TIts architecture consists of a descending (encoder) branch completed
by an ascending (decoder) branch, giving a U-shape to the network. The
descending branch contains an ensemble of convolution and pooling layers.
The ascending branch integrates deconvolution layers connected to the con-
volutions of the descending branch. Connections help to restore the spatial
information. A schematic representation of the network is given in figure
In this study, we employ the U-Net1 version proposed by Leclerc et al. [55].
The model hyperparameters vary slightly compared to the original version
proposed by Ronneberger et al. Details are presented in table[]] The number
of filters is given for the first and for the last convolutional block as well as at
the center of the network, where the spatial information is most compressed.
Each convolutional layer integrates a core (3, 3) coupled to a Rectified Linear
Unit (ReLU) activation function.

A Backbone (e.g. VGG16) can be integrated into the encoder part of the
U-Net network (figure . Its internal parameter are blocked during training
(the weights of the network remain fixed). In practice, a backbone correspond
to a model subpart pre-trained on ImageNet, a database deployed for object

Encoder with

backbone

256 x 256 x 2
256 x 256 x 2

Figure 4: A backbone corresponds to a pre-trained network included in the encoder part
of U-Net.
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recognition tasks in images [61]. Training a U-Net network supported by a
backbone consists in optimizing the internal parameters of the decoder part.
This approach can be associated to a transfer learning strategy.

The various backbones tested and their main characteristics are sum-
marized in table [I| VGG [30] is a model composed of (3,3) convolutional
layers and pooling layers. The 16-layer version (VGG16) was used in this
study. ResNet [56] are neural modules nested in a larger network (network-
in-network) through residual units composed of convolutional filters. The
architecture is about 8 times deeper than VGG. ResNet models at different
depth levels (18, 34, 50, 101 and 152 layers) were trained on the ImageNet
database but only the 101 layers was used in this study. DenseNet networks
[60] include Dense blocks that are densely connected together: each layer is
directly connected with the following ones. Thus, the input vector of a given
layer integrates all the characteristics of those that precede it. The 201-layer
version was chosen. Inception networks [59] contain modules composed of
convolution and pooling layers of different sizes. The InceptionV3 and Incep-
tionResNetV2 versions (with residual connections) were used in this work.

Conventional regularization techniques (e.g. dropout) have not been in-
troduced while a normalization scheme (i.e. batch normalization) is used
in networks having a backbone. These details are summarized in table
No output activation function was specified because the targeted task cor-
responds to a regression in the form of a pixel-to-pixel reconstruction of a
two-channel wavelet representation. The number of variables to be trained

Number of Lowest . .. _Number of
Network . _ Normalization

conv. filters resolution parameters
U-Netl [55] 3211281716 8 x8 1%} 2M

X 8 BatchNorm IM
x 8 BatchNorm 9IM

U—NetVGGlg [3()] 64 l, 512 T 16 8
U-Netvaaig [30] 64 | 512 1 16 8
U-NetRresNet101 [56] 64 | 2048 1 16 8 x 8 BatchNorm IM
U-NetresNext101 [57] 64 | 2048 1 16 8 x 8 BatchNorm IM
U-Netsg_ResNet101 [08] |64 2048 116 8 x 8 BatchNorm IM
U-Netgg_ResNext101 [08] |64 2048 116 8 x 8 BatchNorm IM
U-NetnceptionResNetv2 [09]|32 | 2080 116 8 x 8 BatchNorm 7.5M
U-Netinceptionva [59] 32 | 448 1 16 8 x 8 BatchNorm 8M
U-NetpenseNet201 [60] 64 | 128 1 16 8 x 8 BatchNorm 8.5M

Table 1: Main properties of the U-Net networks used in this study.
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(weights and biases) is comprised between 2 and 9 million (table [L).

The input dimensions of networks with backbones are fixed by the data
used for their training (256 x 256 pixels RGB images from the ImageNet
database). The inputs being in our case two-channels wavelet representa-
tions, it is necessary to introduce an adaptation strategy. An additional 2D
convolutional layer with a (1, 1) kernel has therefore been placed between the
input layer and the encoder part of the network. The neurons of this layer
allow conversion of the input from N to 3 channels. The weights of all the
networks have randomly been initialized by the method proposed by Glorot
and Bengio [62]. Biases are initialized to zero. The Mean Squared Error
(MSE) has been selected as loss for training all the models:

1 N2
MSE=—%" (CWTM - CWTM> (5)
2y

CWT corresponds to the wavelet transform (see section of the ground
truth cPPG signal. CWT is the wavelet representation predicted by the
neural network starting from the wavelet representation of the iPPG signal.

The architecture implementation was carried out under Python using
Keras API and Tensorflow library. The Segmentation Models library [63]
proposed by P. Yakubovskiy was used to develop the neural networks pre-
sented in table The training sessions were launched over 5000 epochs
through batches of 16 images. We used, in this study, the Adam optimiza-
tion algorithm [64] with a learning rate of 0.0001. A dedicated computer
equipped with a dual Intel Xeon Silver 4114 and two Nvidia Quadro P6000s
was used to carry out network learning.

3.4. Waveform estimators

Different features have been proposed to characterize the waveform of a
PPG signal [42]. In order to validate the predictions of the neural archi-
tectures presented in the previous section, we propose to compare the esti-
mates of the most commonly observed waveform features [42] [43] between
the reconstructed PPG signal (computed using the inverse transform of the
predicted wavelet representation) and the ground truth ¢PPG signal. It has
recently been shown that some of these features can properly be estimated
on iPPG signals [14], the contact and contactless waveform features evolving
in a same way.
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Figure 5: Presentation of the features computed from a PPG wave. These parameters
have been categorized in four groups. Temporal: Pulse Interval (PI), Crest Time (CT),
Diastolic Time (DT), time between the main peak and the secondary peak (AT), Dicrotic
Notch Time (Tn), Pulse Width at Half Height (PWHH), time between the dicrotic notch
and the end of the wave (A2T) and First Derivative Peak Time (D1PT). Derivatives: a, b,
¢, d and e correspond to specific points that are detected on the second derivative. Area:
Pulse Area (PA) and area computed between the start of the wave and the inflection point
(A1) and between the inflection point and the end of the wave (A2). Amplitude: Systolic
Amplitude (SA) and Diastolic Amplitude (DA).

Waveform features can be categorized into 4 families: temporal, amplitude-
based, area-based, and (first and second) derivative-based. All features are
presented in figure 5, We refer the reader to the article of Elgendi et al. [42]
which details the PPG waveform features and their physiological interpreta-
tion.
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3.4.1. Temporal features

The Pulse Interval (PI) corresponds to the total time of the wave, which
is measured between two successive valleys. This feature is used to estimate
the pulse rate. The Crest Time (CT) corresponds to the time between the
start (first valley) and the main peak of the wave. The Diastolic Time (DT)
corresponds to the time between the main peak and the end of the wave.
AT corresponds to the time between the main peak and the secondary peak.
Dicrotic Notch Time (Tn) is the time between the start of the wave and the
dicrotic notch. A2T corresponds to the time between the dicrotic notch and
the end of the wave. Pulse Width at Half Height (PWHH) is the time equal
to the width of the wave at half height. The First Derivative Peak Time
(D1PT) parameter corresponds to the time between the start of the wave
and its first derivative peak.

3.4.2. Features based on first and second derivatives

The points a, b, ¢, d and e (ﬁgure are detected on the second derivative
of the PPG signal. These points reflect the wave inflections. They are used
to compute all the ratios presented in figures [9] [I0] and [TI} These ratios
change with age and reflect arterial stiffness [43].

3.4.8. Area-based features

The area-based features are shown in figure The Pulse Area (PA)
parameter corresponds to the total area of the PPG wave. Area 1 (Al) is
computed between the start of the wave and the inflection point (systolic
phase). Area 2 (A2) is computed between the inflection point and the end of
the wave (diastolic phase). The Inflection Point Area ratio (IPA) corresponds
to the ratio between A2 and Al.

3.4.4. Amplitude-based features

The systolic (SA) and diastolic (DA) amplitudes are calculated from the
main and the secondary peaks (figure [pc). The Reflection Index (RI) is the
ratio between DA and SA while the Augmentation Index (AI) is the difference
between SA and DA divided by SA.

3.5. Metrics

In this section, we detail the different metrics employed for evaluating the
performances of the models. The Root Mean Squared Error (RMSE, equa-
tion @ has been computed between the PPG traces obtained after inverse
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wavelet transform (equation . Because the amplitudes are arbitrary and
normalized, we also propose the Mean Absolute Percentage Error (M APE,
see equation . Both metrics along with scatter plots and Pearson correla-
tion coefficients have been used to quantify the level of agreement between

the predicted (@) and the ground truth signals (PPG).

1 _ 2
RMSE = \/ - Z (PPGZ- - PPGi> (6)
1 «|PPG; — PPG,
MAPE =~3% |—— z (7)

i

4. Results and discussion

4.1. Learning performance

k-fold cross-validation results for each model are presented in table
The MSE correspond to the minimum validation loss (equation [5) observed
during training. Each value presented in the table corresponds to the aver-
age and standard deviation computed for a specific U-Net network from the
lowest M SE of each fold.

Network MSEfinger MSE,,,
U-Netl 0.382 £ 0.054 0.266 £ 0.024
U-Netvaais 0.319 + 0.029 0.224 £ 0.032
U-Netvaaio 0.322 4+ 0.033 0.232 £ 0.031
U-NetgresNet101 0.341 4+ 0.037 0.244 + 0.022

U-NetresNext101

0.316 £ 0.036 0.222 £+ 0.022

U-NetsE—ResNet101 0.367 £ 0.031 0.249 + 0.021
U-Netsg—ResNext101 0.368 £ 0.042 0.259 + 0.024
U-NetinceptionResNetva | 0.385 £ 0.041 0.268 £ 0.030
U-Netinceptionva 0.386 £ 0.036 0.271 + 0.026
U-NetpenseNet201 0.317 £ 0.036 0.234 £ 0.027

Table 2: k-fold cross-validation results for each model presented in table The MSFE
(see equation [5)) is computed between predicted and ground truth CWT transforms (real
and imaginary parts). U-Netl corresponds to the neural network proposed by Leclerc et
al. [53], which does not include a pre-trained backbone. All the other neural networks are
U-shaped architectures supported by a backbone.
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Independently of the measurement site, the network supported by ResNeXt101

presents the lowest M SFE, thus indicating the best performance in terms of
wavelet transform reconstruction (real and imaginary parts). We note that
performances of architectures supported by VGG16 and DenseNet101 are
close from ResNeXt101. Backbones based on ResNet and ResNeXt structure
with squeeze and excitation are less efficient. U-Netl presents higher M SE
values than the other models. This observation probably reflects the fact that
the network contains between 4 to 5 times less trainable parameters. Mod-
els supported by a backbone performed generally better. This translates
a real impact of pre-trained convolutional layers on very large databases.
As a reminder, the backbone layers are blocked during the training phase.
Inception-based backbones also present degraded performances.

Regarding the two sites, ear measurements deliver better general perfor-
mances (lower MSFE) than finger measurements. We assume that this gap
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Figure 6: The real and imaginary parts of the reconstructed wavelet transform by the
U-Net network supported by ResNeXt101 (middle figures) are similar to those computed
from the finger ground truth signal (bottom figures). We can notice a small phase differ-
ence in the wavelet representations of the raw iPPG signal (top figures) and the ground
truth cPPG signal (bottom figures). The neural network learned this specificity, the re-
constructed wavelet transform being in phase with the ground truth one. The absolute
representations are depicted for information.



reflects the differences between signal waveform: a PPG signal measured at
the forehead surface is generally closer to a PPG signal measured at the ear
than measured at the finger [65].

4.2. Point-to-point validation of reconstructed PPG signals

This section is dedicated to the evaluation of PPG signals produced by
the neural architectures presented in table

The trained neural models deliver a two-channel wavelet representation
(a real part and an imaginary part). The temporal PPG signal is then recon-
structed from the inverse transform (equation . An example is presented
in figure [6], where we can appreciate the prediction quality of the real and
imaginary parts of the wavelet transform produced by the U-Netgresnextio1
network. The phase has been properly recovered. We can also observe that
the dicrotic notch is well reproduced whereas it was almost absent on the
raw iPPG signal. The reconstructed PPG signal is smooth and its width is
smaller. This shows that the network properly corrects the high frequency

raw iPPG signal
T T

arb. unit

3 I I I I I

0 50 100 150 200 250
ground truth and reconstructed cPPG signals [—.—-— ground truth
' ' ! ‘ reconstructed

arb. unit
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Figure 7: PPG signal prediction (bottom figure) from an iPPG signal (top figure). U-Net
supported by ResNeXt101 and trained on finger cPPG signals produced wavelet coefficients
that gave, after inverse transform, the reconstructed PPG signal. Ground truth and
reconstructed signals are quite similar even if small discrepancies can be noticed.
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coefficients, which transcribe the noise, as well as the central frequency co-
efficients, which determine the pulse signal.

In order to better appreciate the quality of the reconstruction, we present,
in figure [7] a superposition of a reference finger cPPG signal and the PPG
signal predicted by the U-Net network supported by ResNeXt101 (after com-
putation of the inverse wavelet transform). The RMSE and M APE have
been computed between the two signals (equations@and@. The results after
cross-validation on k-fold are presented in table [3] The predictions delivered
by the neural models present good overall performance.

The error on the U-Net network supported by ResNeXt101 is slightly
lower, which is consistent with the results presented in section and table
This particular network was therefore selected for further analysis. Table
presents the same results but across the test set. Additional comparisons,
in particular raw iPPG against ground truth cPPG signals, are presented for
information. The errors are here much more important, the M APFE being
higher than 50%. The last row of the table is given for comparison and indi-
cates the error between the cPPG signals recorded on the two measurement
sites.

cPPGgpger vs cPPGeg,r vs
Network — —
cPPGgpger cPPGear
RMSE MAPE RMSE MAPE
U-Netl 0.260 4+ 0.018 0.064 + 0.010 0.210 + 0.010 0.033 + 0.007
U-Netvaais 0.245 4+ 0.013 0.053 4+ 0.014 0.196 + 0.014 0.031 + 0.010
U-Netvaaie 0.248 4+ 0.011 0.055 4+ 0.012 0.197 + 0.014 0.034 + 0.006
U-NetRresNet101 0.251 + 0.013 0.058 + 0.009 0.205 + 0.010 0.032 + 0.008
U-NetresNeXt101 0.244 + 0.014 | 0.045 + 0.008 | 0.196 + 0.009 | 0.032 + 0.009
U-Netsg_ResNet101 0.260 + 0.010 0.058 + 0.008 0.207 + 0.012 0.032 &+ 0.005
U-Netsg_ResNeXt101 0.261 4+ 0.014 0.060 4+ 0.003 0.211 + 0.012 0.037 + 0.009
U-NetinceptionResNetv2 | 0.265 £ 0.012 0.063 + 0.008 0.213 + 0.013 0.038 + 0.007
U-NeticeptionVvs 0.266 4 0.011 0.061 £ 0.010 0.213 £+ 0.011 0.032 + 0.004
U-NetpenseNet101 0.245 + 0.012 0.052 + 0.007 0.201 + 0.012 0.033 + 0.004

Table 3: k-fold cross-validation for RMSE and MAPE (see equations |§| and Iﬂ) com-
puted between reconstructed PPG signals and ground truth cPPG signals. cPPGapger
and cPPGeg,, correspond to ground truth cPPG signals measured at finger and ear re-
spectively (see signal depicted in blue in figure |7| for a typical example). mﬁnger and
ﬁ}ear correspond to reconstructed PPG signals computed by inverse transform on the
CWT predicted by the different neural architectures (see signal depicted in orange in figure
Ifl for a typical example).
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Comparison RMSE MAPE p
¢PPGfnger 05 CPPGpinger | 0.219 0.045 097
cPPGCeay 15 cPPCeny 0.185  0.0187 0.98

| cPPGinger vs iPPG | 0.985  0.534  0.47 |
cPPGear vs iPPG 0.994  0.543  0.46

cPPGifinger v5 cPPGear 0.198 0.020  0.98

Table 4: RMSE, MAPE and Pearson correlation (p) computed across samples included
in the test set for ground truth cPPG signals, predicted cPPG signals and raw iPPG
signals. An illustration of an iPPG signal is presented in black in figure [} Predicted

signals (m) are produced by the selected U-Netgesnext101 model (see signal depicted
in orange in ﬁgureﬁlfor a typical example). All correlations presented p-values lower than
0.001.

Figure |8 presents scatter plots coupled with Pearson correlation coeffi-
cients. These representations aim to assess and compare the amplitudes of
iPPG, ground truth cPPG and reconstructed cPPG signals over the test set.
The graph representing cPPG.,, against iPPG signals is not presented in
this figure because of its close similarity with the graph presented in figure
The concentric shape of the points distribution reflects the natural wave-
form difference between raw iPPG signals and cPPG signals. This specificity
is mainly due to the dicrotic notch which is generally prominent on cPPG
signals and, in contrast, not perceptible on iPPG signals (see figure 2] for a
typical example). The inherent pulse width difference between ¢cPPG and
iPPG signals also impacts the scatter plot representation presented in figure
Figure |[8b|depicts finger and ear cPPG measurements and is provided for
information.

Figures and [Bd] illustrate the quality of ¢cPPG signal reconstruction
by the U-Netresnextior Detwork on the test set. The Pearson correlations
coupled with the statistical results presented in table [4| (in particular the low
MAPE) show that the PPG waveform is suitably reconstructed through its
wavelet representation. This conclusion is valid for both finger (figure
and ear (figure cPPG signals.

We propose, in the next subsection, an in-depth analysis of these results
by studding pulse waveform features, whose values are originally very differ-
ent between iPPG and cPPG signals.
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Figure 8: Scatter plots along with their respective Pearson correlation (p). All the p-
values are lower than 0.001. The concentric shape observed in figure (a) reflects the
natural waveform difference between raw iPPG signals and cPPG signals. Figure (b)
depicts finger and ear cPPG measurements. Bottom row figures present the cPPG signals
reconstructed by the U-Netresnext101 network for both finger (c) and ear (d) measurement
sites.

4.8. Waveform features

The point-to-point evaluation presented in the previous subsection pro-
vides an overall vision of the predictions quality made by the neural architec-
ture presented in table[I] Here, we propose an evaluation of the reconstructed
PPG waves through specific waveform features across the test set. The stud-
ied features have briefly been presented in section They are divided into
4 categories: temporal, area-based, amplitude-based and based on first and
second derivatives.
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Scatter plots along with their correlation coefficients are presented for
each feature in figures [0] and We focus this specific evaluation on the
U-Netresnexti01 network. A good general performance on each feature can
be observed on each subfigure, showing that the neural network (that take
as input CWT of iPPG waves) reliably recovered the shape of finger and
ear cPPG waves. As a reminder, iPPG signals computed from video on the
forehead region are quite noisy, include artifacts and present a signature that
is very different from ¢cPPG signals measured on other sites [69] (see figure
2).

Several temporal features like PI (total width of the pulse wave) show
high correlations. PI directly reflects the pulse rate, a parameter estimated
from iPPG signals with reliability and precision. Crest time (CT) presents
better correlation than DT (diastole time), which seems to be in accordance
with studies focusing on arterial pressure estimation based on PPG wave-
form analysis [45]. In contrast, the temporal parameter AT exhibits low
correlation. We assume that the specific points associated with the detection
of AT, in particular the secondary peak, are less accurately recovered. Its
estimation is therefore potentially less reliable. It is however interesting to
note that this weak correlation is also observed in figure [[T] that presents a
scatter plot computed between finger cPPG and ear cPPG signals for each
waveform feature.

The parameters related to the amplitudes (SA, DA, RI and AI) present
more or less high scores. The arbitrary nature of the PPG signals ampli-
tudes makes their estimation very complex. The amplitude of cPPG signals
is mainly modulated by the pressure applied between the sensor and the
measurement site, by the light absorption of the tissues as well as by the
optical properties of the skin. The iPPG signal amplitude also depends on
the emitted and reflected quantity of light, the distance as well as internal
camera parameters. In general, the predictions produced from finger cPPG
signals (figure E[) exhibit higher correlations for the amplitude features than
for the predictions computed from ear cPPG signals (figure .

Waveform features related to areas and derivatives are relatively well
transcribed by the neural model. The correlations presented in figures [0] and
are close to the correlations between finger cPPG and ear cPPG signals
presented in figure [T1]

Overall, the reconstructions of cPPG signals measured on the ear (figure
exhibit features that are slightly better correlated with the corresponding
ground truth than those measured on the finger (figure E[) This conclusion
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Figure 9: Scatter plots showing the different waveform features computed from ground
truth finger cPPG signals (cPPGginger, x-axis) against the waveform features computed
from signals reconstructed by U-Netresnextior network (cPPGgnger, y-axis). Associated
Pearson correlation coefficients are presented for each feature (on each sub-figure). p-values
are all lower than 0.001.
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Figure 10: Scatter plots showing the different waveform features computed from ground
truth ear cPPG signals (cPPGea,, x-axis) against the waveform features computed from
signals reconstructed by U-Netgesnext101 network ((ﬁear, y-axis). Associated Pearson
correlation coefficients are presented for each feature (on each sub-figure). p-values are all
lower than 0.001.
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Figure 11: Scatter plots showing the different waveform features computed from ground
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is in accordance with what we presented in sections and in particu-
lar in tables [2] and [3. We assume that this difference in performance is due
to the recovering of the dicrotic notch and the secondary peak that char-
acterize PPG signals. The notch is much more prominent on finger cPPG
signals than on ear cPPG signals. It directly impacts the profile of the wave
by considerably modifying the inflections and therefore the features linked
to the second derivatives. The neural models trained on the wavelet rep-
resentations computed from finger cPPG signals must therefore recover the
coefficients describing the dicrotic notch with more difficulty because this
trait is rarely apparent on raw iPPG signals. The top illustration presented
in figure [12| shows a prediction of lesser quality where the successive dicrotic
notches are approximately reconstructed by the model. The bottom illus-
tration exhibits phase discrepancies. These differences do not systematically
impact the shape of the waves but can create unwanted fluctuations in several
temporal features, the number one factor being the pulse interval.
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Figure 12: Predictions of lesser quality include approximate dicrotic notch reconstruction
(top figure) or phase discrepancies (bottom figure). The signals presented in the two
subfigures correspond to finger PPG signals.
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5. Limitations and future works

The principal limitation of this study corresponds to the small number
of volunteers that participated to the experiments. First validation of the
concept on well-formed signals validated this choice. Thus, the videos we
employed present a high frame rate which, after processing, results in highly
sampled iPPG signals. These signals do not completely reflect those consti-
tuted from frames delivered by conventional cameras or webcams. In addi-
tion, participants were asked to remain still even during the breath holding
experiment.

Several ways of improvement for this work are therefore considered. We
first propose expanding the currently limited database by increasing the num-
ber of recordings and participants. We also envisage studying the impact of
skin color, which directly affects the quality of PPG signals, on performances
by assessing the evolution of waveform features against skin phototype.

Continuous wavelet transform using Morlet’s wavelet has been employed
in this work. We propose evaluating the impact on performances with differ-
ent mother wavelets as well as investigating different time-frequency repre-
sentations like short-time Fourier and constant-() transforms. Modification
of the internal parameters of the U-Net architectures (e.g. the number of
layers and number of neurons by layer) will also be assessed. Moreover, we
propose to study the impact of convolutional attention networks [28] and
temporal difference convolution [6] on performances. Currently, the wavelet
transform of 5 consecutive waves sampled over 256 values are inputted to the
neural network. We envisage varying the number of consecutive waves but
with particular consideration for small values (e.g. a single wave) that can
produce inconsistencies in the time-frequency representations.

As stated at the beginning of this section, the videos used in this research
were acquired by a fast (125 fps) camera. We plan to study in future work
iPPG signals computed from recordings delivered by conventional (30 fps)
cameras. The waves present, in this context, less details and are therefore
more complex to analyze. Training models with larger volume of data can
however be envisaged because many databases dedicated to the study of PPG
signals measured by conventional cameras are now publicly available.

Inputting video in an U-Net architecture rather than time-frequency rep-
resentation will be the subject of long-term research. We propose to test 3D
U-Net architectures coupled with custom loss function that will constrain re-
construction of cPPG signals through their waveform features. This specific
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loss function will be directly integrated into the training phase. The neural
network will thus try to minimize an overall error regarding the shape of the
pulse waves. Compliance with these criteria could thus allow high quality
reconstruction of cPPG from iPPG waves.

6. Summary of contributions

We proposed, in this article, neural architectures that allow accurate re-
covering of cPPG signals from iPPG signals estimated in video recordings.
The reconstruction is carried out using the time-frequency representation of
the signals via the continuous wavelet transform. The proposed neural net-
works correspond to U-Net architectures supported by specific backbones.
The recovered signals present waveform features close to those computed on
ground truth finger and ear cPPG signals. To the best of our knowledge, this
is the first demonstration of a method for accurate reconstruction of cPPG
from iPPG signals.

The main motivation behind this work corresponds to the possibility of
proposing an estimation of arterial blood pressure from video by analyzing
iPPG signals. The next step towards this direction is therefore the integration
of the recovered cPPG signals into AT models dedicated to the estimation of

blood pressure using contact signals collected from large public databases
(50, 48], 45].
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Abstract. Stress is a complex phenomenon that affects the body and
mind on multiple levels, encompassing both psychological and physio-
logical aspects. Recent studies have used multiple modalities to com-
prehensively describe stress by exploiting the complementarity of mul-
timodal signals. In this paper, we investigate the feasibility of fusing
facial features with physiological cues on human stress state estimation.
We adopt a multiple modalities fusion using a camera as a single input
source and based on the remote photoplethysmography method for non-
contact physiological signals measurement. The frameworks rely on mod-
ern Al techniques and the experiments were conducted using the new
UBFC-Phys dataset dedicated to multimodal psychophysiological stud-
ies of social stress. The experimental results revealed high performance
when fusing facial features with remote pulse rate variability with an
accuracy of 91.07%.

Keywords: Stress detection - Multimodality - Machine learning -
Remote photoplethysmography - Facial features

1 Introduction

Cognitive and mental stress corresponds to an important issue in modern soci-
eties. Several studies in this field of research recognize mental stress as a key
factor in diseases and pathologies like depression, sleep disorders, stroke and
heart attack [9]. These effects are particularly induced by a high and daily men-
tal workload.

Various techniques have been developed for treating or preventing this con-
dition, including stress detection techniques that rely on the processing and
the analysis of physiological signals which exhibit a high potential alongside an
increasing interest from the scientific community. These methods are based on,
among others, heart or pulse rate and its variability, breathing rate, skin temper-
ature, and electrodermal activity (or skin conductance) [3]. These physiological
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Fig. 1. Overview of the proposed system for multimodal stress state recognition using
facial features, rPPG signals, and remote PRV features. It consists of two pipelines.
The first one extracts the facial features using a pre-trained VGG16, while the sec-
ond pipeline extracts physiological signals using a state-of-the-art architecture called
MTTS-CAN. The latter recovers the rPPG signal and from which pulse rate variability
features can be measured. The extracted features of each modality are then fused and
fed to a feed-forward neural network for stressed/non-stressed classification.

signals are also frequently analyzed in the field of affective computing and emo-
tion recognition [26]. The objective consists in automatically processing these
signals to predict a stress state or level with a high level of confidence.

Contact sensors are usually employed to record the aforementioned physi-
ological signals. Conventional cameras, through facial video analysis, can also
be employed to compute pulse rate, pulse rate variability, peripheral vasomo-
tor activity, and breathing rate to remotely detect mental stress [4,12,14,15],
engagement [19] and more generally in applications that relate to the affective
computing field of research. Recent techniques include facial features [32], pupil
diameter, and blinking rate [20] to strengthen the assessment of stress levels.

According to the recent review of Arsalan et al. [3], most existing studies
have examined the use of facial features and physiological cues separately or
by combining multiple physiological signals recorded by different sensors. We
propose, in this paper, a multimodal video-based method for mental stress state
assessment based on facial features and physiological signals. Only a single input
source is used to extract features from each modality. Replacing contact intrusive
devices with a camera for physiological data measurement may avoid the prob-
lems related to asynchrony across modalities, which are usually unaligned. More-
over, it reduces the discomfort caused by the contact sensors that are psycholog-
ically stressful. A public dataset, namely UBFC-Phys [17], has been employed
to train and evaluate the models proposed in this article. To the best of our
knowledge, this is the first study to use this multimodal stress database apart
from the original paper.

In the remainder of this paper, stress recognition-related works are presented
in Sect. 2. Section 3 details our proposed approach. Then, in Sect. 4, our method
is evaluated. Finally, conclusions and future works are given in Sect. 5.
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2 Related Works

In recent years, there has been an increasing number of interesting works done
in the field of affective computing, including emotion and stress recognition.
Despite the distinction between stress and emotion [8], they share some com-
mon attributes. Both cause physical and physiological changes in response to a
particular stimulus. Just like emotion, various modalities have been used for
stress detection either in unimodal [4,6,31,34] or multimodal way [1,10,32].
These modalities can be divided into two classes: external physical cues such
as facial expressions, pupil and head movement; internal physiological signals
such as heart rate and its variability, breathing rate, skin temperature, and elec-
trodermal activity. Prasetio et al. [23] proposed a stress recognition system based
on facial features (such as eyes, nose, and mouth) extracted from face images.
Viegas et al. [29] identify the stress state from face videos using 17 action units.
An eye tracker device was used by Pedrotti et al. [22] to analyze the correlation
between stress and pupil diameter. Physiological signals also have been widely
used for stress recognition. They are measured by a contact sensor or remotely
using a simple camera. Zubair et al. [35] developed a five-level stress detection
system based on PPG signals collected using a pulse sensor on the fingertips.
Bousefsaf and al. [4] showed that mental stress can be estimated from pulse rate
variability obtained from remote and low-cost devices. Mcduff et al. [16] recently
proposed a cognitive stress estimation system based on peripheral hemodynam-
ics and vasomotion power extracted from rPPG amplitudes.

Recent studies have shown that multimodal stress detection systems exceed
the performance of unimodal systems [3]. Existing multimodal stress detection
schemes can be divided into a fusion of physiological signals only and a fusion
of remote modalities with physiological signals acquired from contact sensors.
Despite the results obtained, they follow a constrained experimental setup under
laboratory conditions due to the use of intrusive and sensitive equipment that
is psychologically stressful. In addition, while dealing with multiple signals of
different natures gathered from different sources, they may conflict with each
other due to asynchrony across modalities and thus lead to misestimation.

3 Materials and Method

3.1 Dataset

We explored the UBFC-Phys [17], a public multimodal database dedicated to
psycho-physiological studies. The UBFC-Phys dataset provides data collected
from 56 undergraduate psychology student participants, including 46 females
and 10 males, all between the ages of 19 and 38 (with a mean age of 21.8 years).
Participants underwent a social stress-inducing experiment in three stages: a
resting task T1, a speaking task T2, and an arithmetic task T3 (T2 and T3
being the stressful tasks), during which participants were filmed and wore a
wristband that allowed the measurement of their blood volume pulse (BVP) and
electrodermal activity (EDA) signals. A form for calculating the level of stress
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(anxiety score) is presented to participants before and after the experiment.
For each participant, three videos (one video per task) of 3min duration were
recorded at a frame rate of 35fps and with a resolution of 1024 x 1024 pixels.
BVP and EDA signals for each task as well as their anxiety scores calculated
before and after the experiment are publicly available.

3.2 Data Preparation

The conducted experiments include two types of physiological features measured
in contact using a wristband or remotely from video recordings. For contact-
based physiological features, BVP signals and their derivative contact pulse rate
variability (PRVc) features are used. A similar procedure has been conducted
for video-based physiological features, rPPG signal, and its derivative remote
pulse rate variability (PRVr) are employed. Adding to that the exploitation of
the facial features extracted from the video recordings by transfer learning.
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Fig. 2. A representative power spectral density for IBI series showing The areas of
VLF, LF, and HF powers of the PRV.

3.2.1 Contact-based Features

First, the ground-truth BVP signals are resampled to the sampling rate of the
camera (35 fps). Then, detrending is performed using a smoothness priors app-
roach [28]. After that, we applied a 2nd-order Butterworth band-pass filter with
a cutoff frequency of 0.75 and 2.5 Hz to keep only the information related to the
pulse waveform. From the filtered BVP signals, 8 contact pulse rate variability
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(PRVc¢) features have been computed. Peak detection is first performed to locate
the instant of time at which the heartbeat occurs. The contact pulse rate is com-
puted in the time domain by the inverse of the interbeat interval (IBI) divided
by 60 to get the frequency in beats per minute. From the pulse rate variations
during the video recording session, we computed the mean (meanHR), standard
deviation (stdHR), maximum (maxHR) and minimum (minHR) of the pulse rate
series. The root mean square of successive interval differences (RMSSD) is also
calculated (see Eq.1). This parameter gives an evaluation of the vagal activity
reflected in pulse variability [25].
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Fig. 3. Comparison between a predicted signal by MTTS-CAN and the ground-truth
BVP signal taken from the UBFC-Phys dataset. The amplitudes are different but the
peak location seems relevant which is important for IBIs measurement.

Three pulse rate variability features were extracted in the frequency domain.
The IBI series were interpolated with cubic Hermite and the power spectra
were obtained by employing Welch’s method [30]. From the different oscillatory
components of the power spectral density (PSD), low frequency (LF) and high
frequency (HF) components were computed. The LF component is modulated by
baroreflex activity and contains both sympathetic and parasympathetic activ-
ity, while the HF component reflects the parasympathetic branch of the auto-
nomic nervous system [2]. The LF and HF powers of the pulse rate variability
were computed as the area under the PSD curve corresponding to 0.04-0.15
Hz and 0.15-0.4 Hz respectively (see Fig.2). The LF/HF, which represents the
sympatho-vagal balance [5] has also been computed. The very low frequency
(VLF) components were not employed in our experiments.

N-1
1
— __ . _ )2
RMSSD = |~ ?:1 (IBIy, — IBI;) (1)
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3.2.2 Video-based Physiological Features

Remote photoplethysmography (rPPG) and ballistocardiography (BCG) are the
two main methods for measuring physiological signals by camera [13]. In our
experiment, we used the rPPG technique for the estimation of pulse signals.
Despite the advantages and limitations of each method, the BCG has been less
exploited in recent years for different reasons. Compared to rPPG method, BCG
is more difficult to implement because of its morphology which varies according
to the subjects and the sensor used adding to that its sensitivity to noise and
artifacts of movements.

rPPG is an optical technique that captures cardiac signals by observing the
variation of blood volume on the person’s face using a camera. The captured
light reflected from the skin is translated into a variation of the rPPG signal.
Same to BVP signal, several characteristics can be derived from the rPPG signal
such as pulse rate, breathing rate, and remote pulse rate variability (PRVr).

Among the popular methods in the state-of-the-art, we used the Multi-Task
Sequential Shift Convolutional Network (MTTS-CAN) proposed by Liu et al. [11]
for rPPG signals extraction. MTTS-CAN is an end-to-end deep neural network
that combines a convolutional attention mechanism with a time-shifting module.
For a better appreciation of the quality of the rPPG signal, we present in Fig. 3 an
overlay of a BVP ground truth signal in contact and an rPPG signal predicted by
the MTTS-CAN network. We clearly observe a correlation between the estimated
rPPG signal and the ground truth, moreover, the peaks are very close which is
important for IBIs measurement.

For PRVr features extraction, we processed the raw rPPG signals and
extracted the same parameters as for contact signals (see Sect. 3.2.3).

3.2.3 Facial Features

Deep learning models have proven efficient for general-purpose 2D image tasks
compared to traditional machine learning algorithms. However, a large amount
of data is required to train the model properly in order to achieve high perfor-
mance. Due to data scarcity, we looked at the transfer learning approach as a
viable alternative and to reduce the development effort at the same time. A pre-
trained VGG16 model [27] is adopted as facial features extractor. VGG16 is very
popular and has proved to be very efficient and achieve high recognition accuracy
in computer vision tasks [7]. The network consists of a features extraction block
based on convolution layers and the classifier block that consists of dense layers.
The features extraction block is frozen, while the classifier block is modified by
replacing the upper dense layers compatible with stressed/non-stressed classifi-
cation. Afterward, the network is fine-tuned with UBFC-Phys data dedicated to
stress recognition.
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4 Results and Discussion

The experiments were carried out using the same specifications presented in
the original article of the UBFC-Phys dataset [17]. Using the supplementary
material II provided with the paper!, 101 of 168 tasks were selected. The 67
removed tasks were eliminated by testing the correlation between BVP and rPPG
signals to detect the corrupted signals. We used 7-fold subject-independent cross-
validation strategy on both separate and fused modalities. We randomly created
7-fold using 85% of the data for training and the remaining 15% for testing. The
average accuracy across each fold is reported in Table 1 and 2.

Three different experiments were performed for stress state detection: a)
using physiological modalities only (contact and non-contact), b) using facial
features only, and c¢) merging physiological signals and facial features. The non-
stress is represented by task T1, while T2 and T3 represent the stress state.

Table 1. Non-stress vs stress state classification results based on physiological signals

Features Classifiers Accuracy (%)
BVP SVM RBF Kernel | 69.72
SVM Poly Kernel | 58.58

NB 72.61
RF 66.96
KNN 44.22

rPPG SVM RBF Kernel | 57.81
SVM Poly Kernel | 57.81

NB 61.82
RF 62.40
KNN 59.96

PRVc SVM RBF Kernel | 72.74
SVM Poly Kernel | 74.55

NB 78.16
RF 58.58
KNN 73.64

PRVr SVM RBF Kernel | 58.58
SVM Poly Kernel | 57.61

NB 56.92
RF 58.58
KNN 72.22

! https://iceexplore.ieee.org/ielx7/5165369/10056372/9346017 /supp2-3056960.pdf?
arnumber=9346017.


https://ieeexplore.ieee.org/ielx7/5165369/10056372/9346017/supp2-3056960.pdf?arnumber=9346017
https://ieeexplore.ieee.org/ielx7/5165369/10056372/9346017/supp2-3056960.pdf?arnumber=9346017
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Fig. 4. stress state recognition system using facial features.

4.1 Stress Recognition from Physiological Signals

We used machine learning algorithms and ideas proposed in the original article
of the UBFC-Phys dataset to compare the performance of the different features
[17]. Five classifiers were considered: Support Vector Machine (SVM) with a
polynomial kernel, SVM with Radial Basis Function (RBF), Random Forest
(RF), Naive Bayes (NB), and K-Nearest Neighbors (KNN). We conducted the
same 7-fold cross-validation on the five algorithms. Each classifier was trained
with 85% of the signals, and the remaining 15% were used for testing.

Table 1 provides the recognition accuracy using contact (BVP and PRVc)
and non-contact (rPPG and PRVr) features. In this experiment, the best result
was achieved by contact-based physiological features. PRVc features reached the
highest accuracy at 78.16%, followed by BVP signals with an accuracy of 72.61%.
The best performance for contact-based physiological features was obtained with
the Naive Bayes classifier. By comparing the obtained results, we note that the
stress state recognition accuracy with the BVP signal outperforms the rPPG
one. A similar observation can be drawn for the contact and non-contact PRV
features, better accuracy was achieved with the contact features compared to the
remote ones. These observations are in the line with what has been reported in
previous studies [21] but in contradiction with the results presented in the article
that introduced the UBFC-Phys [17]. The authors reported higher accuracies
with video-based physiological modalities than with contact-based physiological
features. We suppose that the performance of each modality depends on the type
of classifier and its parameters, as well as the rPPG signal recovering method. In
their experiments [17], a conventional framework consisting of several signal and
image processing steps was used. Here, we choose to adopt a novel end-to-end
deep learning approach that extracts the rPPG waveform automatically without
any additional pre-processing or post-processing steps [11].

4.2 Stress State Recognition from Facial Features

A transfer learning strategy is adopted in this experiment to leverage the knowl-
edge from the object recognition domain to stress recognition by replacing the
upper dense layers and fine-tuning the network with UBFC-Phys data dedicated
to stress recognition. The proposed system is illustrated in Fig.4. First, each
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frame of the videos is resized to (224 x 224 x 3 and then passed to the pre-
trained VGG16 model [27], which is initially trained with the ImageNet dataset
for object recognition. The output features of VGG16 (before the dense lay-
ers) are extracted and then vectorized using GlobalMaxPoolinglD to obtain the
facial feature vector. This vector is passed to an LSTM layer to consider the
temporal dimension. Finally, it is passed to a dense layer composed of 2 neurons
for classification. For this purpose, a sigmoid activation function is applied to
the dense layer, enabling binary stress classification (stress/non-stress).

The result presented in Table 2 shows that facial features-based stress state
recognition outperforms physiological features either measured in contact or non-
contact. This confirms the results reported in previous studies where recognition
accuracy of affects/emotions using visual features (e.g. facial expressions) out-
performs physiological modalities [21].

4.3 Stress State Recognition from Facial Features and Physiological
Signals

Figurel presents the overall architecture of the proposed multimodal stress
recognition system. It includes two pipelines to extract the features of each
modality from facial video recordings. Each video of the UBFC-Phys dataset is
fed to the facial features network and to the rPPG extractor network (MTTS-
CAN). The first pipeline extracts the features vector after the flatten layer using
the pre-trained weights of VGG16 (See Fig. 4), while the second pipeline returns
either the rPPG signal recovered through the MTTS-CAN network [11] or PRVr
features. We conducted two experiments on our multimodal stress recognition
system. The first one combined the facial features with the PRVr features only,
then with the rPPG signal only. The concatenation result vector of the two
modalities is passed into two dense layers with 256 and 2 neurons respectively.
The first layer takes the rectified linear units as the hidden units while the sec-
ond one uses the sigmoid activation function to predict the corresponding stress
class either stress or non-stress state.

The average accuracies of fusing the facial features with the PRVr features
and with the rPPG signals are shown in Table 2. As we can see, combining facial
features with PRVr features improve significantly the classification accuracy and
deliver better accuracy (91.07%) compared to using facial or PRVr features sep-
arately. The fusion of facial features and the rPPG signals slightly improves
performance, achieving an accuracy of 83.12%.

Table 2. Non-stress vs stress state classification results based on facial features only
and on a fusion between facial features and remote physiological signals

Method Accuracy (%)
Facial features 82.48
Facial features + rPPG 83.12
Facial features + PRVr | 91.07
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5 Conclusion

A multimodal approach to stress state recognition through video-based phys-
iological signals and facial features has been proposed. Physiological cues are
measured remotely from facial video recordings using the rPPG technique, while
facial features were extracted by transfer learning. In such a manner, only a single
input source was utilized to extract features from each modality. Both unimodal
and multimodal experiments were performed. Analysis has shown that facial
features are more relevant and allow for the highest level of accuracy. Compared
to performance using only facial features, merging facial features with physio-
logical signals provided a more accurate estimation, indicating the effectiveness
of multimodal analysis.

Future tasks are to further improve the method’s accuracy and to use other
physiological modalities such as electrodermal activity and respiratory rate and
rPPG waveform-based features linked to vasomotor activity and blood pressure.
We also aim to use the stress score provided by the UBFC-Phys dataset and move
to other approaches for facial features extraction using action units and facial
landmarks. Furthermore, we intend to extend our work to other datasets such as
RECOLA [24], AMIGOS [18] and BP4D+ [33] databases. The RECOLA dataset
[24] can directly be used as it is annotated with stress labels and provides videos
and the corresponding physiological signals. We plan to annotate the other two
databases by exploiting other emotion label classes or by using electrodermal
activity signals that correlate strongly with stress. We also plan to improve and
search for the best features extractor model by comparing the most commonly
employed neural architectures (e.g. ResNet, Xception, Inception).
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Abstract

Human’s affective state recognition remains a challeng-
ing topic due to the complexity of emotions, which involves
experiential, behavioral, and physiological elements. Since
it is difficult to comprehensively describe emotion in terms
of single modalities, recent studies have focused on fusion
strategy to exploit the complementarity of multimodal sig-
nals. In this article, we study the feasibility of fusing fa-
cial expressions with physiological cues on human emotion
recognition accuracy. The contributions of this work are
threefold: 1) We propose a new spatiotemporal network for
facial expression recognition using a 3D squeeze and exita-
tion based 3D Xception architecture (squeeze and exitation
Xception network). 2) We adopt the first multiple modali-
ties fusion using single input source which, to the best of
our knowledge, no existing multimodal emotion recognition
system has attempted to identify emotional state from only
facial videos using facial expressions and physiological sig-
nals features. 3) We compare the performance of the uni-
modal approach using only facial expressions or physiolog-
ical data, to multimodal systems fusing facial expressions
with video-based physiological cues. In our experiments,
physiological signals such as the iPPG signal and features
of heart rate variability measured remotely using the imag-
ing photoplethysmography (iPPG) method are used. The
preliminary results show that the multimodal fusion model
improves the accuracy of emotion recognition, and merging
facial expressions features with iPPG signal gives the best
accuracy with 71.90 %.

1. Introduction

Human faces are a rich source of information. They
are characterized by a great expressive richness to convey
emotions, which makes them widely used to identify a per-
son’s emotional state through facial expressions. Despite
the impressive results achieved by facial expressions recog-
nition systems on acted databases with controlled condi-

tions [31,49, 54, 55], they are rarely faced with real situa-
tions. In a natural environment, reliability cannot be guaran-
teed and performance degrades considerably [20,32,43]. In
addition to environmental conditions (camera angles, light-
ing conditions and occlusion of multiple parts of the face)
and the ability to control and fake emotions by people, fa-
cial expressions are also more affected by social and cul-
tural differences. Human expressiveness can vary among
individuals and can be expressed differently. Additionally,
facial expressions can be a mix of different emotion status
that occur at the same time or may not be expressed at all.
Consequently, using facial expressions to identify person’s
emotional state can lead to wrong inferences.

Recently, few studies have proposed emotion recognition
systems that use physiological cues extracted from the face
using the imaging photoplethysmography method [2, 30].
The advantage of using physiological parameters to assess
emotion compared to facial expressions is : physiologi-
cal data are a response to the autonomic nervous system
(ANS), which is involuntarily activated and therefore un-
controllable.

Most existing studies have examined the use of facial
expressions and physiological cues separately [12, 24, 31,

,49]. However, little attention has been paid to a fusion
between these two modalities [8, 18, 51]. Combining the
two can improve recognition accuracy and provide greater
reliability by continuously gathering information about the
person’s emotional state despite missing acquisition or mis-
leading information that may occur when using a single
modality, operating in a noisy environment or in the case
of falsified expression. Additionally, fusion of multiple
modalities can help to compensate errors and resolve am-
biguities by learning useful representations of data of dif-
ferent nature. However, The main limitation is related to
asynchrony across modalities, which are usually unaligned.
In addition, physiological data are collected through intru-
sive devices that are psychologically stressful and this can
modify the measurement results of physiological signals.
Therefore, this will certainly affect the accuracy of emotion
scoring [9]. In this work, we propose the first video-based
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Figure 1. Proposed system for multimodal emotion recognition using facial expressions, iPPG signals and HRV features.

multimodal spontaneous emotion recognition that combines
facial expressions with physiological data to derive the ad-
vantages of each modality.

In this paper the physiological parameters are mea-
sured from facial video recordings based on imaging pho-
toplethysmography principal [6]. While, facial expressions
features are extracted using a new spatio-temporal network
that combines 3D squeeze and exitation module with 3D
Xception architecture. The features vector of facial expres-
sions is then merged with the physiological signals to ulti-
mately estimate the corresponding emotion. In the remain-
der of this paper, human emotion recognition related works
are presented in Section 2. Section 3 details our proposed
approach. Then, in Section 4, our method is evaluated. Fi-
nally, conclusions and future works are given in Section 5.

2. Related works

In literature, various modalities have been used to rec-
ognize emotion either in unimodal [12,36,45,47] or multi-
modal way [5, 18,39]. Initial research on unimodal emotion
recognition systems have focused on the expressiveness of
the face because it is visible and it is easier to collect a large
set of facial data. The commonly adopted methods for fa-
cial expression recognition are either deep learning or hand-
crafted based approaches [22,25]. However, deep learning
techniques have made a great success due to their high gen-
eralizability for new data and their ability to automatically
extract robust features and learn complex nonlinear repre-
sentations. Today, the state of the art deep learning methods
allow to achieve a categorization of facial expressions with
a reliability of around 98% in controlled situations [23].
Nevertheless, several real environment issues can degrade
recognition accuracy such as lighting variations or back-
ground appear [28]. Additionally, deep learning algorithms
often fail in the case of expressionless faces or falsified ex-

pressions.

To address this issue, some attempts have been made to
identify emotion through physiological data that are man-
aged by the autonomous nervous system (ANS) which is
involuntarily activated and therefore can not be controlled
[12]. Physiological signals such as electroencephalography,
electrocardiography, skin temperature and electromyogra-
phy are reliable data for quantifying emotions [10]. How-
ever, they are acquired by intrusive contact sensors that
can interfere with the subjects and modify their emotional
state. Moreover, the complexity of measurement and the
sensitivity of the electrodes of these devices strongly limit
their scope of application, since they cannot be used out-
side of the laboratory. Therefore, recent studies have fo-
cused on wearable devices that provide various biosig-
nals such as blood volume pulse (BVP) and electroder-
mal activity and their derivatives to explore new application
fields. Going even further, recent works have used heart
rate variability measured by the camera to detect emotional
state [3,30]. They rely on imaging photoplethysmography
method, which allows non-contact extraction of the blood
volume pulse signal from facial video recording, making it
more interesting and promising among the other physiolog-
ical signals that require contact devices and the presence of
a specialist to monitor them.

Numerous literature studies show that multimodal emo-
tion recognition systems outperform unimodal approaches
[11,33]. For this reason, several works have merged facial
expressions with physiological data to develop reliable sys-
tems [8, 18,21]. Despite the obtained results , they follow a
constrained experimental setup under laboratory conditions
due to the use of intrusive and sensitive equipment. In addi-
tion, dealing with multiple signals of different nature gath-
ered from different sources, may conflict with each other
due to asynchrony across modalities and thus lead to mises-
timation.
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3. Materials and Methods
3.1. Dataset

Although many multimodal emotion databases are avail-
able, few of them provide physiological signals. The ex-
isting datasets for multimodal emotion recognition from fa-
cial expressions and physiological signals are quite limited
not only in data size but also in diversity. In this study we
explore a new multimodal sponatneous emotions database
named BP4D+ [53]. Compared to existing datasets such
as MAHNOB [42] and DEAP [19], BP4D+ is a large scale
dataset that includes annotated action units (AUs) and dis-
crete emotion categories. In addition, it contains numerous
challenging conditions and diversity in terms of significant
head motion and ethnic diversity, making it more interest-
ing and challenging. Since its creation, BP4D+ has been
widely used in several works related to affective computing
and vital signs measurement [26,46,50].

This dataset consists of RGB and thermal images, 2D
and 3D facial landmarks, actions units and 8 physiological
signals collected with contact sensor. 140 subjects (82 fe-
males and 58 males) of different ethnic ancestry participated
in 10 sessions designed to induce the following emotions :
Happiness (T1), Surprise (T2), Sadness (T3), Startle (T4),
Skeptical (T5), Embarrassment (T6), Fear (T7), Pain (T8),
Anger (T9), and Disgust (T10). 1400 RGB videos lasting
30 seconds to 1 minute were recorded at a frame rate of
25 fps. The resolution of each image is 1040 x 1392 pix-
els. Among the 10 tasks, only four emotions are used in our
experiments, corresponding to happiness, embarrassment,
fear and pain. These emotion tasks are provided with man-
ually coded action units (33 in total) that were computed
only for the most expressive frames of each task.

3.2. Data preparation

First, the most expressive frames are extracted from
each emotion task using action units code provided in the
database. Then, we follow the same protocol used in [37].
A robust face swapping-based segmentation method is used
to get rid of non-skin regions that do not hold any color
changes associated with cardiac activity [35]. This step
improves imaging photoplethysmographic signal extraction
from face skin. All the images of the segmented faces are
cropped according to the coordinates of the non-zero pixels
and then scaled to 48 x 48 x 3. Besides, data augmentation
strategy is applied for the training set to create additional
and different training instances. Several image transforma-
tions such as rotating the image by varying degrees, trans-
lating it and flipping it horizontally and vertically, cropping,
zooming in, or changing the contrast of the image have been
randomly applied on video fragments. It helps to reduce
overfitting and improve the generalizability of the model.

Recovered iPPG signal

s Peaks
—— Ground trith PPG
—— Recoversd signal by MTTS-CAN

40 80 100 120

Figure 2. Comparison between a predicted signal by MTTS-CAN
and the ground-truth PPG signal taken from BP4D+ dataset.

3.3. Video-based physiological signals measurement

In this study, physiological parameters are measured re-
motely using imaging photoplethysmography method [6].
iPPG is an optical technique for capturing cardiac signals
by observing the blood-volume variations on a person’s face
using a simple camera. The captured light reflected by the
skin is translated to a variation of the iPPG signal. Sev-
eral important vital signs can be derived from the iPPG
waveform such as pulse rate, respiration rate and heart rate
variability (HRV). However, among these physiological fea-
tures, only iPPG signal and its derivative HRV features have
been used in our experiment. It was reported in several stud-
ies that heart rate variability is one of the most important
physiological characteristic that reflects affective states of
a person [3,30]. HRV features can be derived from time
interval variation between consecutive heartbeats in iPPG
signal. [14].

iPPG extraction algorithms can be divided to hand-
crafted based algorithms [52] that use signal/image process-
ing steps and deep learning based approaches [34]. In this
work, we used a multi-task sequential shift convolutional
attention network (MTTS-CAN) proposed by Liu et al. to
extract the iPPG signal [29]. MTTS-CAN is one of the
recent popular state-of-the-art deep learning based method
that provides good performance in terms of heart and respi-
ratory rates measurement. In order to better appreciate the
quality of the recovered iPPG signal, we present, in Figure
2, a superposition of a ground truth PPG signal recorded by
contact sensor and the iPPG signal predicted by the MTTS-
CAN network. It is clear that the estimated iPPG signal is
strongly correlated with the ground truth and the location of
the peaks is very close.

The core module of MTTS-CAN is a hybrid network
that uses the attention mechanism in conjunction with Tem-
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Figure 3. A representative PSD for IBI signal showing The areas
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poral Shift Modules [29]. The recovered iPPG signals
by MTTS-CAN allow HRV features extraction both in the
time-domain and in the frequency-domain. For both time
and frequency analysis, peak detection is performed to lo-
cate the instant of time at which heartbeat occurs (which
allows to compute HRV features).

In time domain, heart rate is calculated as the inverse
of the of the interbeat interval (IBI) divided by 60 to get
the frequency in beats per minute. From the heart rate
variations in the selected window, we computed the mean
(meanHR) and standard deviation (stdHR) of the heart rate
series. The root mean square of successive interval differ-
ences (RMSSD) is also calculated (see Equation 1). This
parameter allows assessing vagal activity reflected in heart
variability [40].

1 N—1
—— Y (IBILiy1 —IBL)? (1)
N-14

RMSSD =

In frequency domain, the IBI series were interpolated
with cubic Hermite and the power spectra were obtained by
employing Welch’s method [48]. The power spectral den-
sity (PSD) of a signal makes it possible to analyze its dif-
ferent oscillatory components such as HRV low frequency
(LF) and high frequency (HF) components. The LF compo-
nent is modulated by baroreflex activity and contains both
sympathetic and parasympathetic activity, while the HF
component reflects parasympathetic branch of the ANS [1].
The LF and HF powers of the HRV were computed as the
area under the PSD curve corresponding to 0.04-0.15Hz and
0.15-0.4Hz respectively (see Figure 3). We also computed

the ratio LF/HF, which represents the sympatho-vagal bal-
ance [4]. The very low frequency (VLF) components were
not employed in our experiments.
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Figure 4. The Squeeze-and-Excitation module consists of global
average pooling as a Squeeze operation. The two Fully Connected
layers are then used to to learn the feature weights. We first re-
duce the feature dimension with a shrinkage parameter r, then we
recover the dimension with the same r in the next fully connected
layer. After the excitation operation, the SE block use the scale op-
eration to re-weight the input layers, by element-wise multiplying
the raw input by the excitation output.

3.4. Facial expressions recognition network

Xception network is one of the state-of-the-art methods
that has proven efficient for general purpose 2D image tasks
in terms of accuracy, fast convergence speed and low com-
putational costs [7]. Xception is a derivative of Inception
network [44]. It replaces Inception modules with depth-
wise separable convolution layers and adds residual con-
nections. This modification, compared to Inception archi-
tecture, greatly reduces the computational cost and mem-
ory requirements, while maintaining similar (or slightly bet-
ter) performance. The depth-wise separable convolution
performs spatial convolution by channel separately with-
out considering the relationship between different channels,
while conventional convolution considers all spatial and
channel information together. Exploiting channel depen-
dency is an important way to improve convolutional neu-
ral network. Therefore, we fuse Xception network with
Squeeze and Excitation (SE) [16] module to achieve chan-
nel weighting and maintain or improve classification ac-
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curacy while reducing the number of parameters and the
amount of computation. The SE block aims to explicitly
model the interdependency between the channels of the im-
age, in order to recalibrate the channel-wise feature maps in
a computationally efficient manner.

The structure of the SE block is depicted in Figure 4.
The SE processing blocks are composed of two successive
parts: Squeeze and Excitation. The squeeze operation uses
a global average pooling layer, while the excitation phase
consists of two fully-connected layers that take the rectified
linear units and sigmoid activation units as the hidden units
respectively. In our implementation, 3D version of Xcep-
tion network and SE block are used instead of the original
implementations that only consider the spatial information.
In this way, we simultaneously extract spatio-tempoal fea-
tures without adding additional layers to take into account
the temporal features.

Figure 5 presents the overall architecture of the proposed
3D-SE-XceptionNet which consists of three blocks (entry,
middle and exit) as the original architecture of Xception net-
work. However, the model structure is simplified by reduc-
ing the number of repetitive depthwise separable convolu-
tion layers. Our new mini Xception includes 15 convolu-
tion layers instead of 36 compared to the original version.
These convolutional layers are structured into 14 modules,
all linked with shortcuts as in ResNet architecture [15] ex-
cept the first and last modules. SE blocks are inserted after
the residual connections. The output of the features extrac-
tion is flattened and passed to two dense layers with 256 and
4 neurons respectively. The first dense layer takes the recti-
fied linear units as the hidden units while the second takes
the softmax activation function to predict the corresponding
emotion classes.

4. Results and Discussion

The BP4D+ dataset was split to 90 percent training set
and 10 percent validation set. Training and validation were
performed three times with different samples in order to
verify the consistency of the system. Three different experi-
ments were conducted to classify emotions : using (a) facial
expressions only, (b) physiological modalities only, and (c)
facial expressions and physiological signals together.

4.1. Implementation details

The proposed system is implemented with Keras and ten-
sorflow frameworks and ran on Nvidia Quadro P6000s. As
BP4D+ is sampled at 25 fps, the length of face video clip
is set to Nbframes = 100 frames (corresponding to 4 sec-
onds) while the size of each image frame is 48 x 48 x 3
(ImHeight x ImWidth x Channel). We used Rectified
Adam (RAdam) optimizer [27] to optimize a categorical
crossentropy loss function. We trained the network for 50
epochs with batch size = 16, learning rate 10~ 4 and decay

=1072. L1 and L2 regularization strategies with coefficient
equal 10~ 2 are employed which help to overcome overfit-
ting issue and improve the model generalizability to new
data.

4.2. Emotion recognition from facial expressions

5 state-of-the-art networks are compared : 3D-VGG
[41], 3D-ResNet [15], 3D-DenseNet [17], 3D-Inception
[44] and 3D-Xception [7]. We train these architectures us-
ing the BP4D+ dataset and then we compare their perfor-
mance with our proposed model. As shown in Table 1, our
3D-SE-Xception network outperforms the state-of-the-art
deep learning architectures. Note that in the conducted ex-
periments, we do not perform any special preprocessing to
the input images except face segmentation (See section 3.2).
Compared to other architectures, the accuracy improves to
the highest value of 63.40% when the Xception network is
fused with the SE block. The proposed framework derives
more targeted feature information through the SE module,
meanwhile using the Xception network to avoid the van-
ishing gradient problem through residual connections and
reduce the computational cost and memory requirements
through the depthwise separable convolutions.

Table 1. Comparison of proposed method to state-of-the-art net-
works on spontaneous data for facial expression recognition.

Method Accuracy
3D-DenseNet [17] 37.91
3D-Inception [44] 42.48

3D-ResNet [15] 44 .44
3D-VGG [41] 49.02
3D-Xception [7] 53.59
3D-SE-Xception (Ours) 63.40

Figure 6 shows the confusion matrix for the emotion
recognition system based on facial expressions. The over-
all performance of the proposed network was 63.4%. Hap-
piness and pain are the most recognized emotions with an
accuracy of 80% and 81% respectively, while fear is miss-
classified as happiness and pain. This can partially be ex-
plained by the multiple behaviors that may occur during the
expression of this emotion.

4.3. Emotion recognition from Physiological signals

Emotion classification from physiological signals is per-
formed using iPPG signals and HRV features. Three differ-
ent fusion schemes were conducted for emotion recognition

2464



l 3D-SE-XceptionNet |

m

Entry block

Middle block

v
v

Exit block

I

\
AY

¢ — — — 4+ — -

~

N

~
\h

1
I
1 :
1 -
1

A/

[ conv N relu 163313, 2000 | .
T | SepConv_BN_RelLU 3x3x3 | SepConv_BN_RelU 3x3x3 |
[ con BN Relu 32, 3353, 200 | ConvaD 256, [
i | SepConv_BN_RelU 3x3x3 | 1xX1x1; 3D-SE block
[ sepconvanreuzas | §222:2 |
Conv3D 32; [ | SepConv_BN_RelU 3x3x3 | MaxPool3D, 3x3x3; s=2x2x2 |
1X1x1; 52X2%2 SD-SElbIock #
[ wavood, 333200 |
/ SepConv_BN_RelU 3x3x3 |
© | j
/7
[ sepconvmnrewzas | | Conv_BN_RelU f: ki s \ 3D-SE block
1
[ ! , . l
. 1| Conv3D filter:f; kernel:k; strides:s | !
Conv3D 64; 3D-SE block 1 1 Flatten |
1xX1x1; s=2%2x2 | 1 BatchNormalization : 1
]
[ wavoosn, 333000 | |‘ RelU : Dense 256 Rell |
¢ N ’ I
P i N | Dense 4; Softmax |
| SepConv_BN_RelLU 3x3x3 | | SepConv_BN_RelU k \
[ ! — '
. 1 BatchNormalization I
Conv3D 128; 3D-SE block | [
1x1x1; 522x2%2 | | RelU I
1 1
[ wavooo, 333000 | /1 SeparableConvaD kernel:k |
\ 1

¢ N ’

Figure 5. The network structure of 3D-SE-Xception corresponds to a modified version of the Xception network. 2D depthwise separable
convolution layers are replaced by 3D depthwise separable convolution to capture both spatial and temporal features across video frames.
The SE block was embedded in the model to enhance the useful feature channels and weaken the useless feature channels through channel-
wise feature maps recalibration. Two dense layers are used instead of Global Average Pooling.The input video fragment first goes through
the entry flow, then through the middle flow which is repeated eight times, and finally through the exit flow which ends in a dense layer

with 4 neuron to classify emotions.

using physiological data. First, iPPG signals and HRV fea-
tures are used separately to classify emotions. Then, we
merge them to see which approach gives the best accuracy.

Inspired by the work of Fabiano et al. [13], a feedforward
neural network is used in our experiments. It consists of two
layers. The input layer has the same number of neurons as
the input length (100 for iPPG modality , 6 for HRV), while
the output layer includes the same number of neurons as
the number of classes of emotion to predict. The activa-

tion function for the input layer is ReLU, while the softmax
activation function is employed for the output layer.

Table 2 illustrates the recognition accuracy using iPPG
signals and HRV features separately and after fusion be-
tween them. As can be seen from table 2, whether physio-
logical signals are used separately or combined, the recog-
nition accuracy is low compared to facial expressions. Be-
sides, the performance when using iPPG signals is better
than HRV. This can be justified by the short length of the
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Figure 6. Emotion classification confusion matrix using facial ex-
pressions.

iPPG signals used for HRV analysis as well as the signal
quality which is prone to noise and artifacts due to move-
ments and lighting conditions. Therefore, it has an impact
on the accuracy of HRV characteristics. On the other hand,
iPPG and HRYV fusion exhibit lower performance. This may
be related to the lack of correlation between the iPPG signal
and the HRV characteristics.

Table 2. Comparison of emotion recognition accuracy from phys-
iological signals. Abbreviations: (iPPG :Emotion from iPPG sig-
nals), (HRV : Emotions from HRV features), (iPPG + HRV : Emo-
tions from the combined iPPG and HRV).

Method Accuracy
iPPG 55.33
HRV 53.59

iPPG + HRV 44.64

4.4. Multimodal emotion recognition

The architecture of our multimodal emotion recognition
system is shown in Figure 1. Basically, the proposed model
consists of two pipelines allowing to extract the features
of each modality from video streams (See section 3.3 and
3.4). Each video of BP4D+ is fed to the facial expression
network (3D-SE-Xception) and to the iPPG signal network
(MTTS-CAN). The first pipeline extracts the features vec-
tor after the flatten layer (See Figure 1 using the pre-trained
weights of our 3D-SE-Xception model, while the second

pipeline returns either the iPPG signal recovered through
the MTTS-CAN network or HRV features. Hence, three
experiments have been carried out for multimodal emotion
recognition. First, facial expressions features are combined
with only the iPPG signal, then only with HRV vector. Fi-
nally, all modalities are fused. The contactenation result
vector is then passed to two dense layers with 256 and 4
neurons respectively. The first dense layer takes the recti-
fied linear units as the hidden units while the second takes
the softmax activation function to predict the corresponding
emotion class.

The recognition accuracy for each experiment is re-
ported in Table 3. The results show that combining fa-
cial expression features with physiological parameters im-
prove the performance compared to unimodal approach ei-
ther using facial expressions or physiological data sepa-
rately. This confirms previous studies that have obtained
the same results where the precision of the fusion exceeds
unimodality systems, and the performance of facial expres-
sions modality is always better compared to physiological
signals [8, 1 8]. Furthermore, the lack of correlation between
the iPPG signal and HRV features impacts performance,
whether merging just these two modalities or their fusion
with facial expressions.

Table 3. Comparison of multimodal emotion recognition accuracy
from facial expressions and physiological signals.

Method Accuracy
Facial expressions + HRV 70.59
Facial expressions + iPPG 71.90
Facial expressions + iPPG + 67.97

HRV

Figure 7 shows the confusion matrix for the multimodal
emotion recognition system based on facial expressions and
HRV features fusion, and facial expressions and iPPG fu-
sion. The overall performance of the proposed network is
70.59% and 71.90 % respectively. Compared to using fa-
cial expressions only, the fusion with physiological signals
improved significantly the accuracy for missclassified emo-
tions. For example, fear accuracy has been doubled from
32% to 64% for each fusion schemes.

4.5. Discussion

Facial expressions and physiological signals modalities
establish superiority to each other. The combination of fa-
cial expression features and iPPG signal achieved the high-
est accuracy of around 72%. This slightly outperforms the
fusion between facial expressions and HRV features. How-
ever, merging only the iPPG signal and HRV features, or
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Figure 7. Multimodal emotion classification confusion matrix using facial expressions with HRV Features and iPPG signals.

with facial expressions features, gives the lowest accuracy.
We hypothesize that these two modalities may interfere with
each other, thus impacting the recognition accuracy. In
addition, using multiple modalities considerably improved
performance for miss-classified emotions such as Fear. Al-
though facial expressions are visible and easy to categorize
compared to physiological cues, incorporating with physio-
logical modalities can provide complementary information
and further enhance the performance. On the other hand, the
results obtained fit perfectly with existing multimodal sys-
tems that use multiple input data sources and demonstrate
the possibility of using only facial videos to recognize emo-
tions using human physiological and physical cues.

5. Conclusion

This paper proposes a new framework for multimodal
emotion recognition through facial expressions and physio-
logical signals. A novel spatiotemporal neural network has
been proposed, which fused Squeeze-and-Excitation mod-
ules with a 3D Xception network to recalibrate the channel-
wise feature maps in a computationally efficient manner.
Two physiological parameters were selected, namely the
iPPG signal and the HRV features. Unlike existing studies,
physiological cues were measured remotely based on imag-
ing photoplethysmography method. This way, only single
input source were used to extract features from each modal-
ity. It is very interesting and promising to recognize emo-
tions in a multimodal way with a single non-intrusive sen-
sor. using a camera that is integrated on all digital devices
used in daily life allows to reduce the cost and to make the
system more accessible. Furthermore, video-based physio-

logical signals measurement is more practical and may re-
duces the discomfort caused by the contact devices. Over-
all, we have shown that fusion of two modalities (facial ex-
pressions with iPPG signals or facial expressions with HRV
features) gives significant improvements and offer potential
for more accurate recognition of affects and emotions.

As future work, we intend to incorporate other physi-
ological signals and test the performance on other multi-
modal emotion datasets. We will further explore the com-
plexity of expressions to understand the poor performance
of certain emotions.
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Abstract

We present in this paper the LCOMS Lab’s approach to
the st Vision For Vitals (V4V) Challenge organized within
ICCV2021. The V4V challenge was focused on computer
vision methods for vitals signs measurement from facial
videos, including pulse rate (PR) and respiratory rate.

We propose a novel end-to-end architecture based on a
deep spatiotemporal network for pulse rate estimation from
facial video recordings. Unlike existing methods, we predict
the pulse rate value directly without passing by iPPG signal
extraction and without incorporating any prior knowledge
or additional processing steps. We built our network using
3D Depthwise Separable Convolution layers with residual
connections to extract spatial and temporal features simul-
taneously. This is very suitable for real-time measurement
because it requires a reduced number of parameters and a
short video fragment. The obtained results seem very sat-
isfactory and promising, especially since the experiments
were conducted in challenging dataset collected in uncon-
trolled conditions.

1. Introduction

The measurement of vital parameters including heart
rate, respiratory rate, blood pressure and body temperature,
is one of the first gestures most practiced in daily clinic [9].
Vital signs are primarily critical indicators that can inform
healthcare professionals about a person’s physical or psy-
chological well-being. They therefore allow the screening
and initial medical treatment of several diseases. Physi-
ological parameters are often measured using invasive or
non-invasive sensors in direct contact with the human body.
Despite all the advantages of contact technologies, they re-
main psychologically stressful and often uncomfortable due
to the use of contact sensors with the body [1]. In addition,
their use is almost impossible in cases of trauma, skin ulcer,
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Université de Lorraine

djamaleddine.djeldjli@univ-lorraine.fr

Choubeila Maaoui
Université de Lorraine
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burns, congenital and contagious diseases [5]. Therefore,
these different limits, together with the strong demand for
reliable, comfortable, simple, portable, non-stressful and
low-cost technology, has prompted researchers to develop
new techniques for non-contact measurement of physio-
logical signals. Imaging PhotoPlethysmoGraphic (iPPG)
has been able to gain more attention over the past decade
through its various qualities by overcoming the drawbacks
of contact measurements mentioned above [17]. Thus, it re-
duces wiring and increases the safety of patients and med-
ical personnel by minimizing the risk of contamination in
case of a contagious disease [5] .

All the studies carried out on Photoplethysmographic
imaging have greatly improved its performance in terms
of reliability and robustness in case of controlled condition
(good lighting and motionless subject) [12, 17, 4, 20, 18].
However, at present most of these methods present a weak-
ness in the case of uncontrolled measurement conditions, in
particular the subject’s motions and low lighting conditions
as well as very dark skin (phototype 6) [1, 14]. In this field,
deep learning based methods show better performance than
conventional state-of-the-art algorithms based on image and
signal processing [11, 21]. Recently, several deep learning
architectures have been proposed to extract the iPPG signal
from a video stream. the resulting signal is then processed
to estimate pulse rate. These methods are not one stage.
They still require pre-processing or post-processing steps
as well as long-term recording for measurements. In addi-
tion, they employ private or public databases collected in
a controlled environment. However, this makes the study
less realistic as the experiences have to be carried out under
unconstrained scenarios.

2. Related works

The commonly adopted methods for contactless pulse
rate measurement using iPPG consist of two-stage pipelines
which divide the prediction process into iPPG signal ex-
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Figure 1. LCOMS Lab’s solution pipeline

traction and pulse rate estimation. According to the way
of iPPG signal extraction, we can divide the existing works
into two major approaches either conventional based meth-
ods using image and signal processing algorithms [12, 17,
4, 20, 18, 1], or deep learning based methods that extract
the iPPG signal automatically [3, 11, 21, 2]. In this section,
we review mainly the state-of-the-art deep learning based
methods for contactless pulse rate measurement.

There have been several CNN-based methods for iPPG
based contactless pulse rate measurement. Chen and Mc-
Duff [3] proposed a two-stream 2D CNN architecture, in-
cluding one stream of an appearance model to find the ap-
propriate regions of interest (ROI) and the other of motion
representation model. The two streams are trained to ex-
tract BVP waveform under heterogeneous lighting and sig-
nificant head motions. Radim et al. [15] proposed a two-
stage convolutional neural network method composed of 2D
CNN and 1D CNN respectively. The first one extracts the
iPPG signal while the second regresses the pulse rate value.

As the 2D CNN cannot directly exploit the temporal fea-
tures, spatial-temporal modeling techniques were involved
in a more explicit way. 3D CNN were used to learn spatial-
temporal features for reconstructing precise rPPG signals
or estimating pulse rate directly [22, 2]. Niu et al. [11]
combined a CNN with gated recurrent units to train spatial-
temporal maps generated from multiple ROI. Neural ar-
chitecture search (NAS) were also proposed to discover a
well-performing model with good generalization capacity
in less-constrained scenarios [21].

3. Our method

The general framework is illustrated in Figure. 1. we
consider the task of pulse rate estimation from facial videos
as a one stage regression task. We perform first face seg-
mentation [10] to get rid of the background and the non-
skin areas. Then, without any additional preprocessing or
post processing steps, batches of 50 frames (corresponding
to 2 seconds) are fed to a 3D fully convolutional network

to learn spatiotemporal features associated with the subtle
color changes on these regions to finally estimate the cor-
responding pulse rate. This section describes each step in
detail.

3.1. Face segmentation

The commonly used face and facial landmarks detectors
often fail in cases of large head motions, occlusions, fa-
cial expressions, and black skin. As the dataset used for
the challenge is collected under challenging conditions, we
perform face segmentation to get rid of non-skin regions
that don’t hold any color changes associated with cardiac
rhythm [10]. The employed algorithm is proposed initially
for face swapping and works ideally in challenging scenar-
ios. All the images of the segmented faces are cropped ac-
cording to the coordinates of the non-zero pixels and then
scaled to 160 x 120 x 3 pixels.
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Figure 2. Distribution of the ground truth pulse rates in the V4V
database.
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3.2. Training set augmentation

The ground-truth pulse rates (in beats per minute) of v4v
dataset [13] has an inverse Gaussian distribution with more
examples for mid pulse rate range [70, 90 Bpm] and less for
very high and very low pulse rates (see Figure 2). To avoid
the poor predictions for the minority samples, we have per-
formed offline data augmentation on video sequences with
pulse rate values larger than 90 Bpm or smaller than 70
Bpm. We have randomly applied image transformations
as well (slight rotation, scale, brightness) for each batch to
avoid data redundancy and to add robustness of data varia-
tion to the network.

3.3. Pulse rate estimation neural network

The most existing methods on contactless pulse rate
measurement using iPPG consist of two-stage frameworks
which extract first iPPG signal and then estimate PR by
peak detection. [3, 22, 11, 15, 12, 6, 19]. This approach can
achieve more reliable predictions but increases the compu-
tation cost and require a long-time window, hence being less
convenient for real-time applications. Unlike the commonly
used approach, we treat this task as a one-stage regression
problem which predict the average pulse rate in only 2 sec-
onds video fragments (2 seconds or T = 50 frames) (see
Figure 3). Inspired by mobilenet architecture [7], we built
our network using a linear stack of depthwise separable con-
volution layers to reduce the computational cost and mem-
ory requirements. Residual connections are used as well to
avoid vanishing gradient problems. Each depthwise separa-
ble convolution layer is followed by a batch normalization
and ReLU activation function. The final activations of the
last convolution layer are then flattened and passed to two
dense layers with 1024 and 1 neurons respectively, to esti-
mate the pulse rate value.

4. Experiment
4.1. Dataset

V4V dataset provided by the organizers of the V4V
Challenge is used for both training and testing [13]. It con-
sists of totally 1400 RGB videos recorded from 140 partic-
ipants (82 females and 58 males) with diverse ethnic ances-
tries. Each participant is involved in 10 sessions that aimed
at evoking different emotions which makes it more chal-
lenging for heart rate estimation. The length of each video
is between 30 seconds to 1 minute. The frame rate is 25
fps, and the resolution of each image is 1040 x 1392 pix-
els. Heart rate is collected by a contact sensor operating at
a sample rate of 1 kHz. Since we use in our experiment 2
seconds video fragment to predict the pulse rate value, each
50 frames take the mean of 2000 pulse rate values as label.
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Figure 3. The framework of spatio-temporal networks for pulse
rate estimation directly from facial videos recording.

4.2. Evaluation Metrics

We evaluate the performance of our approach on the test
set of V4V dataset provided for the V4V challenge [13].
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Three widely evaluation metrics were used including the
mean absolute error (MAE, see equation 1), the root mean
square error (RMSE, see equation 2), and the Pearson’s cor-
relation coefficient (r, see Equation 3).

1 < —
MAE = — PR; — PR; 1
n;| | (1)

RMSE =

S0 (PR, — PR;)(PR; — PR;)

= (3)
VS, (PR, — PR(PR; - PR.)?

r

The MAE and RMSE show the difference between the
predicted and the ground truth pulse values. While the pear-
son correlation coefficiennt R examines the strength and di-
rection of the linear relationship between them on scale of
[-1 1]. The smaller value indicates better performnace for
MAE and RMSE whilst the larger R indicates better perfor-
mance.

4.3. Implementation details

We implemented our method in keras and Tensorflow
frameworks and ran it on Nvidia Quadro P6000s. We used
Rectified Adam (RAdam) optimizer [8] to optimize MSE
loss. We trained the network for 30 epochs with batch size
=50, learning rate 10~ 4 and decay = 10~ 2. It took approx-
imately 20 minute for each epoch. In addition to a dropout
layer [16] of 0.4 ratio that is applied before the final dense
layer of the networks, L1 and L2 regularization strategies
with coefficient equal 103 are employed which help to
overcome overfitting issue and improve the model gener-
alizability to new data.

5. Results

The proposed end to end approach is trained and tested
on the V4V dataset without using any external data. It
shows good performance with an MAE of 11.60 bpm, an
RMSE of 14.90 bpm and a r of 0.20.The obtained results
seem very satisfactory and promising, although the training
is carried out on an unbalanced data set. Moreover, our ap-
proach was initially developed to perform a prediction upon
every 2 second recording portion (50 frames). But predic-
tion per frame was instructed in the challenge. Thus, we
think that our model was not fully adapted with this require-
ment, and this may be the reason why the average error over
the entire test set was a bit high. Despite that, our model
runs in real-time both at GPU ( 150ms) and CPU ( 260ms).

6. Conclusion

In this paper, we proposed LCOMS Lab’s approach for
contactless pulse rate estimation from facial videos. Pulse
rate values estimated with this method was submitted for
the 1st V4V Challenge [13]. All the experiments were
conducted on the challenging V4V dataset provided by the
challenge organizers.

The proposed solution is an efficient model built on a
linear stack of depthwise seprable convolution layers con-
catenated with residual connections. This combination sig-
nificantly reduces the number of parameters and the com-
putational time without any performance degradation. This
architecture performs competitively and can serve as a base-
line for future robust architecture in real time applications.
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Résumé — La mesure de signaux photopléthysmographiques (PPG) sans contact est une technique de mesure non invasive permettant d’estimer
un ensemble de fonctions vitales par analyse vidéo délivrée par caméra. Nous proposons, dans cet article, une méthode permettant de convertir un
signal PPG mesuré par caméra en un signal PPG mesuré en contact (cPPG). L’objectif & plus long terme consistera a transformer le signal cPPG
en signal de tension artérielle afin de proposer une chaine de traitement permettant d’estimer la tension a partir d’une vidéo. La méthode que
nous proposons dans cet article repose sur la transformée en ondelettes et sur des modeles d’IA modernes. Les résultats refletent la pertinence de
I’approche et montrent qu’une estimation de la pression artérielle a partir d’un signal PPG caméra converti en signal en contact est envisageable.

Abstract — Imaging photoplethysmography (iPPG) is an optical technique dedicated to the assessment of several vital functions using a simple
camera. We here propose a method for converting iPPG to contact PPG (cPPG) signals for, in future works, translating this cPPG signal to blood
pressure. This would allow remote measurement of blood pressure from video. The continuous wavelet transform of cPPG and iPPG signals
and deep neural networks are employed in this study. The results exhibit good agreements towards several metrics, showing that the neural
architectures properly estimated cPPG from iPPG signals through their CWT representations.
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1 Introduction

Les recherches portant sur la mesure de signaux physiolo-
giques par des technologies sans contact ont connu des avancées
significatives ces dernieres années [[1]]. La photopléthysmographie
(PPG) est mesurable a distance en observant les fines fluctua-
tions de la couleur de la peau d’une personne. Le domaine
est en plein essor et est soutenu par un ensemble d’études [2].
Des méthodes issues de la vision par ordinateur, du traitement
d’images et de I'intelligence artificielle (IA) ont été utilisées
ou développées spécifiquement pour transformer avec fiabilité
la vidéo d’entrée en parametres biomédicaux. Ces méthodes
reposent principalement sur des modéles neuronaux [3].

Les recherches dans ce domaine s’orientent désormais vers
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la mesure de nouveaux parametres physiologiques tels que la
tension artérielle [4]]. La mesure de la tension par analyse vidéo
est complexe et peu de travaux montrent sa faisabilité. Deux
directions sont a I’étude : (i) la mesure du pulse transit time,
parametre admis comme étant corrélé avec la pression artérielle
[3]] ainsi que (ii) I’étude directe de I’onde PPG [4]]. Les résultats
de ces études sont mitigés.

Des tentatives d’utilisation de modeles d’IA ont récemment
été proposées [6]. L apprentissage des modeles est cependant
contraint par les faibles quantités de données actuellement dis-
ponibles. L’apprentissage d’un modele neuronal profond per-
mettant d’estimer avec précision la pression artérielle par ana-
lyse vidéo est donc difficilement enviseagable pour le moment.
Nous avons récemment montré que les caractéristiques tempo-

FIGURE 1 — Vue d’ensemble de la méthode proposée. Le signal
iPPG est calculé a partir d’une analyse vidéo du visage de la
personne. Sa représentation en ondelettes traverse le réseau U-
Net. La transformée inverse de la représentation en ondelettes
prédite permet de former le signal PPG en contact (cPPG) me-
suré traditionnellement via un capteur placé sur le doigt.

relles, de courbure et de surface des signaux PPG évoluent de
maniere comparable entre les mesures caméra et les mesures en
contact pris au doigt ou a I’oreille [[7]. Ce point est important
car il motive la présente étude. Nous partons de 1’hypothese
qu’un signal PPG mesuré par caméra (imaging PPG, iPPG)
peut étre converti en un signal PPG en contact (cPPG) par le
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FIGURE 2 — Illustration de signaux extraits du participant # 1
durant une phase de maintien de respiration.

biais d’un modele d’IA utilisant pour entrée la représentation
en ondelettes continue des signaux. L’objectif final et a plus
long terme consistera a transformer ce signal cPPG en signal
de tension artérielle car ce champ est soutenu par une littérature
plus mature, avec des études présentant des méthodes dont les
performances respectent les standards internationaux [|8]].

2 Meéthodes

2.1 Base de données et protocole expérimental

Les données utilisées pour apprendre les modeles neuronaux
présentés en section 2.3] ont été présentées dans un article pu-
blié précédemment. 12 volontaires ont participé a I’étude. L’ age
des participants est compris entre 20 et 35 ans. Ils ont été placés
aenviron 1 metre d’une caméra rapide (125 fps). Les références
ont été acquises grice a des capteurs PPG en contact placés au
doigt et a I’oreille. Deux essais de 60 secondes ont été pro-
posés aux participant de 1’étude. Premier test : nous deman-
dions aux participants de rester au calme et de respirer norma-
lement. Second test : il était demandé aux participants de rete-
nir leur respiration autant que faire se peut, I’objectif étant de
provoquer des variations physiologiques qui modifient la pres-
sion artérielle et impactent les signaux PPG enregistrés. Nous
renvoyons le lecteur vers la publication originale pour plus de
détails concernant la procédure et le matériel utilisé [[7]].

La base de données contient 724 signaux échantillonnés sur
256 points. Chaque signal contient 5 ondes PPG. La base de
données est aléatoirement séparée en deux jeux : 75 % est dédié
a ’entrainement des réseaux (soit 543 signaux) et 25 % a la
validation (181 signaux).

2.2 Traitement des images et des signaux

Le front correspond a une région d’intérét pertinente en maticre
de rapport signal sur bruit [9]]. La région est détectée a partir
d’un modele composé de 68 points épousant les formes prin-

cipales du visage. Ces différents points sont suivis le long de
la vidéo et certains d’entre eux permettent de calculer automa-
tiquement la position du front. En pratique, les algorithmes de
détection du visage et des caractéristiques faciales respective-
ment inclus dans les librairies OpenCV et Dlib ont été utilisés.

Le signal PPG caméra est construit a partir d’une moyenne
spatiale sur le canal vert des pixels du front. Cette technique a
été utilisée des les toutes premieres publications relatives a la
mesure de signaux PPG sans contact par caméra [9]. Les ten-
dances basses fréquences du signal brut sont supprimées par
un filtre passe-bas spécifique [10]. Une détection robuste des
vallées est ensuite calculée pour extraire chaque onde. In fine,
chaque signal de la base de données est échantillonné sur 256
points et contient 5 ondes PPG successives. Un signal calculé a
partir d’une des vidéos est présenté en figure 2] Les signaux
en contact de référence mesurés au doigt et a ’oreille sont
aussi présentés sur cette figure. Tous les signaux ont été centrés
(moyenne nulle) et réduits (écart type égal a un).

Il est proposé, dans cet article, d’exploiter la représentation
en ondelettes pour entrainer les différentes architectures neu-
ronales présentées en section 2.3 L'utilisation directe du si-
gnal iPPG en entrée d’un modele d’TA est soutenue par une
littérature tres faible [6] et des essais préliminaires mais non
concluants ont ét€ menés par notre équipe de recherche (résultats
non publiés).

La transformée en ondelettes continue d’un signal corres-
pond a une représentation temps-fréquence calculée a partir
d’une fonction prototype communément appelée ondelette mere.
Contrairement a la transformée de Fourier, la transformée en
ondelettes permet de détecter des variations abruptes de fréquence
dans les signaux. Différentes ondelettes meres ont été développées
et le choix dépend principalement de I’application et des pro-
priétés du signal analysé. L’ ondelette mere de Morlet, déja uti-
lisée dans de précédents travaux relatifs a ’analyse de la PPG
par caméra [11]], a été retenue dans cette étude.

La transformée en ondelettes continue a été calculée sur chaque
signal PPG dans la plage de fréquences physiologiques des bat-
tements du coeur humain, soit [0.6, 4.5] Hz [2]]. La représentation
en ondelettes qui servira a entrainer les architectures neuro-
nales est de dimension 256 x 256. Un signal caméra et en
contact au doigt avec leur représentation en ondelettes respec-
tive (partie réelle) sont présentés en figure[I] Notons la différence
de forme entre les signaux et de phase entre les représentations
en ondelettes : la partie réelle du signal caméra démarre sur une
série de coefficients de faible intensité (pseudo-ellipse bleue)
tandis que la partie réelle du signal en contact démarre sur des
coefficients de forte intensité (pseudo-ellipse jaune). Il s’agit
d’une particularité que le réseau de neurones apprendra pen-
dant la phase d’entrainement.

2.3 Développement des architectures neuronales

Nous proposons d’exploiter 1’ architecture U-Net initialement
utilisé dans le cadre de la segmentation d’images médicales.
Cette architecture est constituée d’une branche descendante (en-
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codeur) complétée par une branche ascendante (décodeur), don-
nant une forme de U au réseau. La branche descendante contient
un enchevétrement de couches de convolution et de pooling.
La branche ascendante integre des couches de déconvolution
connectées aux convolutions de la branche descendante. Les
connexions permettent de restaurer 1’information spatiale. Une
représentation schématique du réseau est proposée en figure|I]

Des squelettes (backbones) peuvent étre intégrés dans la par-
tie encodeur du réseau U-Net. Les parametres internes du sque-
lette sont bloqués pendant I’entrainement (les poids du réseau
restent fixes). Il s’agit en pratique de modeles pré-entrainés
sur la base de données ImageNet pour des taches de recon-
naissance d’objet dans les images [12]]. L’apprentissage d’un
réseau U-Net soutenu par un squelette consiste a optimiser les
parametres internes de la partie décodeur. Cette stratégie est si-
milaire a un apprentissage par transfert. Différents squelettes
populaires ont été testés : la version 16 couches (VGG-16), la
version 101 couches de ResNet [[13]], 1a version 201 couches du
réseau DenseNet [[14] ainsi que les réseaux Inception [[L5] In-
ceptionV3 et InceptionResNetV2. Les techniques convention-
nelles de régularisation n’ont pas été introduites tandis qu’un
schéma de normalisation (i.e. batch normalization) est utilisé
dans les réseaux possédant un squelette. La tdche ne correspond
pas a une classification de données mais a une régression sous
la forme d’une reconstruction pixel a pixel d’une représentation
en ondelettes sur deux canaux. Le nombre de variables a entrai-
ner (poids et biais) est compris entre 2 et 9 millions.

3 Résultats et discussion

3.1 Performances des apprentissages

La fonction de coit (loss) des moindres carrés (mean squa-
red error) a été utilisée :

1 N2
MSE= 3" (cwT:,; - CWTy;) (1)
i,

CW'T correspond a la transformée en ondelettes (voir sec-
tion du signal PPG en contact et CWT acelle prédite par
le réseau de neurones a partir de la transformée calculée sur le
signal caméra.

Les valeurs minimales des courbes d’évolution de la fonc-

Réseau MSEdoigt MSEoreille
U-Netl 0.327 0.231
VGG-16 0.282 0.228
ResNeXt101 0.316 0.227
InceptionResNetV2 0.323 0.238
InceptionV3 0.318 0.233
DenseNet201 0.308 0.229

TABLE 1 — Minimum de la fonction de coiit pour chaque
modele. U-Netl correspond au réseau initial n’intégrant pas de
squelette. Les autres réseaux correspondent a des architectures
U-Net soutenues par un squelette.

tion de colit pour chaque réseau sont répertoriées dans le ta-
bleaum Indépendamment du site de mesure, le réseau utilisant
VGG-16 pour squelette présente la plus faible M SE, tradui-
sant ainsi les meilleurs performances en terme de reconstruc-
tion de la représentation en ondelettes. Notons tout de méme
que les valeurs minimales sont proches, en particulier celles
calculées a partir des signaux PPG mesurés sur I’oreille.

Nous pouvons aussi observer, toujours dans le tableau [T}
une meilleure performance générale (plus faible M SE) sur
les reconstructions en ondelettes des signaux en contact me-
surés a ’oreille par rapport aux signaux en contact mesurés
au doigt. Nous supposons que cet écart reflete les différences
de forme d’onde mesurée entre les sites, la forme d’une onde
PPG caméra étant en général plus proche d’une onde mesurée
a l’oreille que d’une onde mesurée au doigt [[7].

3.2 Validation point a point des signaux recons-
truits

Les modeles neuronaux entrainés délivrent une représentation
en ondelettes sur deux plans (une partie réelle et une partie ima-
ginaire). Le signal PPG temporel est reconstruit a partir de la
transformée inverse. Un exemple est présenté en figure 3] ot il
est possible d’apprécier la qualité de la prédiction. L’écart de
phase est correctement rectifié par le réseau. Nous pouvons ob-
server que le rebond caractéristique de 1’onde PPG est conve-
nablement reproduit alors qu’il est presque toujours absent sur
le signal caméra. Nous voyons que le signal a été lissé et que
la largeur des ondes est plus faible, montrant que le réseau
corrige les coefficients hautes fréquences qui transcrivent les
bruits ainsi que les coefficients des fréquences centrales qui
déterminent la partie pulsée du signal.

La RMSE (équation [2) a été calculée entre les différentes
paires de signaux. Les amplitudes de ces derniers étant arbi-
traires et normalisées, nous proposons d’observer I’ erreur abso-
lue moyenne en pourcentage (mean absolute percentage error,
voir équation [3).

signal iPPG brut

————— Vvérité terrain

signaux en contact
T T reconstruit

0 50 100 150 200 250
Echantillons

FIGURE 3 — Exemple de reconstruction d’un signal en contact
au doigt (figure du bas) a partir du signal caméra (figure du
haut). Notons la bonne qualité de la reconstruction méme si
quelques erreurs sont visuellement perceptibles.
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La M APEF estici calculée entre deux signaux (p et ¢ dans

I’éq. B). Les résultats sont présentés dans le tableau [2] ot nous

pouvons observer la performance des prédictions délivrées par

les modeles neuronaux. L’erreur sur le réseau utilisant le sque-

lette VGG-16 est 1égerement plus faible, ce qui cohérent avec
les résultats présentés en section [3.1]et dans le tableau[T]}

4 Synthese des contributions et travaux
futurs

Nous avons proposé, dans cet article, une architecture neu-
ronale permettant de reconstruire avec précision une onde PPG
en contact a partir d’'une onde PPG sans contact estimée par
analyse vidéo. La reconstruction est effectuée par le biais de
la représentation temps-fréquence du signal via sa transformée
en ondelettes continue. Les réseaux de neurones proposés cor-
respondent a des architectures U-Net avec et sans squelette. Le
signal reconstruit est proche de la vérité terrain en contact.

La motivation principale de ce travail correspond a la pos-
sibilité de proposer une estimation de la pression artérielle par
I’analyse d’ondes PPG mesurées par caméra. La prochaine étape
consistera donc a intégrer les signaux reconstruits dans des
modeles d’IA dédiés a I’estimation de la pression artérielle par
signaux en contact, ces derniers pouvant étre collectés sur de
larges bases de données publiques (e.g. MIMIC).

Des pistes d’amélioration de ce travail sont envisagées. Nous
proposons dans un premier temps d’étoffer la base de données
qui est actuellement limitée en volume et en nombre de par-
ticipants. Les vidéos exploitées dans cette recherche ont été
acquises par une caméra rapide (125 fps). Nous envisageons

CPPGdoigt vs CPPGoreille Vs

Réseau CP/P\Gdoigt Cfl?}oreille
U-Netl 0.25 (0.06) 0.20 (0.04)
U-Netygai6 0.23 (0.05) 0.20 (0.04)
U-NetResNeXt101 0.24 (0.06) 0.20 (0.04)
U'NetlnceptionResNetV2 0.25 (006) 0.20 (004)
U-Netinceptionva 0.25 (0.06) 0.20 (0.04)
U-NetpenseNet201 0.24 (0.06) 0.20 (0.04)

TABLE 2 — RMSE (MAPE) (voir les équations [2| et
calculées entre les prédictions délivrées par les différentes
architectures neuronales et les vérités terrain. cPPGqoigt et
cPPG eine correspondent aux signaux de vérité terrain me-
surés au doigt et a I’oreille respectivement (voir courbe bleue
sur la figure [3| pour un exemple typique). C?P\Gdoigt et
(@Oreille correspondent aux prédictions calculées par la
transformée inverse des représentations en ondelettes délivrées
par les modeles neuronaux (voir courbe orange sur la ﬁgureE[).

d’étudier dans des travaux futurs les signaux formés a par-
tir de caméras classiques (30 fps). Les ondes PPG acquises
par de tels capteurs sont moins détaillées et donc plus com-
plexes a analyser. Il sera en contrepartie possible d’entrainer
les modeles avec un volume plus conséquent de données, de
nombreuses bases dédiées a I’étude de signaux PPG mesurés
par des caméras classiques étant désormais publiquement dis-
ponibles. Une intégration directe de la vidéo plutot que des
représentations temps-fréquence dans 1’architecture U-Net fera
I’objet de travaux de recherche sur le plus long terme.

Références

[1] D. McDuff, “Camera measurement of physiological vital
signs,” arXiv preprint arXiv :2111.11547, 2021.

[2] S. Zaunseder et al., “Cardiovascular assessment by ima-
ging photoplethysmography-a review,” Bio. Eng., 2018.

[3] A.Nietal., “A Review of Deep Learning-Based Contact-
less Heart Rate Measurement Methods,” Sensors, 2021.

[4] H. Luo et al., “Smartphone-based blood pressure mea-
surement using transdermal optical imaging technology,”
Circulation : Card. Imag., vol. 12, p. 008857, 2019.

[5] N. Sugita et al., “Contactless Technique for Measuring
Blood-Pressure Variability from One Region in Video
Plethysmography,” Journal of Med. and Bio. Eng., 2018.

[6] F. Schrumpf et al., “Assessment of Non-Invasive Blood
Pressure Prediction from PPG and rPPG Signals Using
Deep Learning,” Sensors, vol. 21, no. 18, p. 6022, 2021.

[7] D. Djeldjli et al., “Remote estimation of pulse wave fea-
tures related to arterial stiffness and blood pressure using
a camera,” Biomed. Sig. Proc. and Control, vol. 64, 2021.

[8] J. Cheng et al., “Prediction of arterial blood pressure
waveforms from photoplethysmogram signals via fully
convolutional neural nets,” Comp in Bio and Med, 2021.

[9] W. Verkruysse et al., “Remote plethysmographic imaging
using ambient light.” Optics express, vol. 16, 2008.
[10] M. Tarvainen et al., “An advanced detrending method
with application to HRV analysis,” IEEE Trans. on Bio-
med. Eng., vol. 49, no. 2, pp. 172—-175, Feb. 2002.

[11] F. Bousefsaf et al., “Continuous wavelet filtering on web-
cam photoplethysmographic signals to remotely assess
the instantaneous heart rate,” Bio. Sig. Proc. and Control,
vol. 8, pp. 568-574, 2013.

[12] E. C. Too et al., “A comparative study of fine-tuning deep
learning models for plant disease identification,” Comp.
and Elec. in Agr., vol. 161, pp. 272-279, 2019.

[13] K. He et al., “Deep residual learning for image recogni-
tion,” in [EEE CVPR, 2016, pp. 770-778.

[14] G. Huang et al., “Densely connected convolutional net-
works,” in IEEE CVPR, 2017, pp. 4700-4708.

[15] C. Szegedy et al., “Inception-v4, inception-resnet and the
impact of res. connections on learning,” in AAAI, 2017.



»

HAL

open science

Estimation sans contact de la tension artérielle par
intelligence artificielle

Frédéric Bousefsaf, Théo Desquins, Djamaleddine Djeldjli, Yassine Ouzar,
Choubeila Maaoui, Alain Pruski

» To cite this version:

Frédéric Bousefsaf, Théo Desquins, Djamaleddine Djeldjli, Yassine Ouzar, Choubeila Maaoui, et al..
Estimation sans contact de la tension artérielle par intelligence artificielle. Handicap 2022, Jun 2022,

Paris, France. hal-03790827

HAL Id: hal-03790827
https://hal.science/hal-03790827

Submitted on 28 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03790827
https://hal.archives-ouvertes.fr

Estimation sans contact de la tension artérielle par
intelligence artificielle

Frédéric Bousefsaf* Théo Desquins*T Djamaleddine Djeldjli* Yassine Ouzar* Choubeila Maaoui* Alain Pruski*

* LCOMS, Université de Lorraine
F-57000 Metz, France
frederic.bousefsaf @univ-lorraine.fr

Résumé—Les pathologies cardiovasculaires sont désignées par
I’OMS comme étant la premiére cause de mortalité dans le
monde. Elles sont responsables de prés de la moitié des maladies
invalidantes aujourd’hui. Un ensemble de technologies per-
mettent de mesurer différents signaux physiologiques et fonctions
vitales sans qu’aucun contact avec la personne ne soit nécessaire.
Les caméras et webcams sont des technologies omniprésentes et
accessibles. Elles sont désormais utilisées afin d’évaluer 1’état de
I’appareil cardiovasculaire en vue du diagnostic de pathologies
relatives au ceeur ou aux vaisseaux sanguins. Nous proposons,
dans cet article, une nouvelle méthode permettant de mesurer la
tension artérielle d’une personne a partir de vidéos délivrées
par une caméra. L’analyse est effectuée sur le visage de la
personne par une observation des fines variations de couleur qui
apparaissent a chaque fois que le ceeur bat et envoie du sang dans
le corps. L’intelligence artificielle, a travers le développement de
modeles d’apprentissage profond (deep learning), est ici utili-
sée. L’estimation déportée de fonctions physiologiques concerne
tout autant les personnes saines que malades ou immobilisées,
vieillissantes ou en perte d’autonomie ainsi que dépendantes ou
en situation de handicap.

Mots clés—fonctions vitales, intelligence artificielle, technolo-
gies sans contact, activité cardiovasculaire, tension artérielle

I. INTRODUCTION

L’OMS désigne les maladies cardiovasculaires comme étant
la premiere cause de mortalité dans le monde [1]]. Ces patho-
logies et leurs risques s’accentuent avec le vieillissement en
raison de la prévalence élective dans les tranches d’age les
plus élevées de la population. Les pathologies respiratoires ou
cardiovasculaires sont responsables de pres de la moitié des
maladies invalidantes. Les personnes en situation de handicap
(en particulier dans le cas de déficience motrice) sont plus su-
jettes a des pathologies d’origine cardiovasculaire comparées
aux personnes sans handicap [2]. Une tension artérielle élevée
en est un exemple typique.

Dans ce contexte, la mesure de données physiologiques et
médicales a distance correspond a une solution d’intérét : elle
permet aux personnes d’effectuer des mesures fréquentes de
leurs fonctions vitales, favorisant ainsi le diagnostic précoce
ou un meilleur suivi de la ou des pathologies. Idéalement,
les mesures déportées doivent étre prises de maniere non-
invasive ; sans instrumentation supplémentaire ou spécifique ;
sans contact, de préférence par le biais des caméras embar-
quées dans les systemes mobiles. L’estimation déportée de
fonctions physiologiques concerne tout autant les personnes
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saines (diagnostic précoce) que malades ou immobilisées,
vieillissantes ou en perte d’autonomie ainsi que dépendantes
ou en situation de handicap (maladies invalidantes notam-
ment).

Différentes technologies ont été développées ou utilisées
au fil des années pour mesurer des fonctions et indicateurs
biomédicaux a distance [3]]. Ces systemes sont de plus en plus
préférés aux capteurs en contact car ils permettent de réduire
la géne occasionnée par I'instrumentation (patchs adhésifs a
placer sur la peau, cables...) tout en améliorant le confort d’uti-
lisation. D’un point de vue médical, une utilisation continue
des éléments en contact peut entrainer des irritations voire
des infections, notamment sur des peaux sensibles (personnes
brulées par exemple).

Les caméras et webcams sont des technologies qui per-
mettent de mesurer un ensemble de signaux physiologiques
liés a D’activité cardiaque et vasculaire [4]], [|5]]. Le principe
repose sur la photopléthysmographie et consiste a observer les
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FIGURE 1: Vue d’ensemble de la méthode proposée dans ce
travail. L’analyse vidéo du visage d’une personne permet de
former son signal PPG. Le signal, a travers sa représentation
en ondelettes (CWT), entre dans un modele d’TA en forme de
U qui se charge de le convertir en signal de tension artérielle.



variations de couleur sur la peau du visage pour en extraire les
fluctuations périodiques du volume sanguin, délivrant ainsi un
signal proche de 1’onde de pouls. Un ensemble de parametres
physiologiques peuvent étre calculés a partir de ce signal [6]]—
[10]. Les techniques d’intelligence artificielle (IA) sont de
plus en plus étudiées [[11]], [12]. Les modeles d’IA délivrent
généralement des performances plus intéressantes que les tech-
niques conventionnelles reposant sur des opérations manuelles
de traitement des images et du signal.

Nous proposons dans cet article une méthode permettant
d’estimer, a partir de vidéos délivrées par une caméra, la
tension artérielle d’'une personne. L’analyse est effectuée par
mesure de la photopléthysmographie sur le visage de la
personne. Cela consiste & observer les fines variations de
couleur apparaissant sur la peau. Nous présentons les détails
de ce principe en section La section [III] est dédiée a la
présentation de la méthode. Les étapes de traitement du signal
et le modele d’TA déployé pour répondre a cette problématique
sont présentés. Les résultats et perspectives qui se dégagent de
cette recherche sont exposées en derniere section. Cette étude
s’inscrit dans la continuité de travaux récemment proposés par
notre groupe de recherche [[13]]-[15].

Cette recherche présente I’'une des toutes premieres démons-
trations de mesure de la tension artérielle par IA sur des
flux vidéos délivrés par des caméras standards. Les résultats
respectent d’ores et déja un ensemble de métriques définies
par les standards internationaux.

II. MESURE DE LA PHOTOPLETHYSMOGRAPHIE

La PhotoPléthysmoGraphie (PPG) repose sur un principe
particulier : le sang absorbe plus de lumiere que les tissus
physiologiques tels que la peau [4]. Ainsi, la PPG correspond
a la mesure des variations du volume sanguin par 1’absorption
et réflexion de la lumiere (Fig. [2). Ces fluctuations de volume
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FIGURE 2: La photopléthysmographie consiste a mesurer les
variations de 1’absorption de lumiere par les vaisseaux san-
guins via une caméra. Les signaux formés (un par composante
colorimétrique du capteur) traduisent les évolutions du volume
sanguin a chaque battement cardiaque. Figure extraite de [[16].

sont entrainées a chaque battement cardiaque (le volume croit
lors de la contraction et décroit lorsque le muscle cardiaque
se relache).

Les premieres études portant sur la mesure de la PPG
par caméra ont été introduites en 2008 par Verkruysse et
al. [[18]]. Les chercheurs mesuraient les signaux PPG a une
distance d’environ 1 metre dans une région d’intérét définie
manuellement sur le visage du sujet observé. Les pixels de la
région d’intérét sont moyennés a chaque trame et pour chaque
canal chromatique rouge, vert et bleu (RVB) du capteur. Un
groupe de pixels est ainsi transformé en un scalaire pour une
image donnée.

Ce processus, répété pour chacune des trames, permet de
transformer une vidéo RVB en trois vecteurs (Fig. qui
contiennent différentes informations physiologiques [[7]-[9]
dont notamment la fréquence cardiaque, le taux d’oxygene
dans le sang, la pression sanguine ainsi que le rythme respi-
ratoire. Les signaux PPG sont la plupart du temps lissés par
filtre passe-bande [6] afin de réduire le bruit et les artefacts
de mesure les plus marqués.

Le choix des régions d’intérét du visage retenu pour la
mesure de la PPG est un parametre fondamental [[18]], [[19].
Une étape de pré-segmentation de certaines parties du visage
[10] ou de I’ensemble des pixels de la peau [6] peut Etre
introduite. Le calcul de la moyenne spatiale, permettant de
transformer les trames de la vidéo en signal, n’est effectué
que sur les pixels retenus a I’issue de la pré-segmentation. Le
mouvement correspond & la principale limite des méthodes.
La PPG par caméra a néanmoins été exploitée de maniere trés
soutenue ces dernieres années [4], [5]].

III. METHODES
A. Base de données

BP4D+E| est une base de données publique et ouverte a
la communauté de recherche. La base integre initialement
des signaux physiologiques de référence (dont la tension
artérielle continue mesurée par un capteur en contact), des
images thermiques, des vidéos et des scans 3D de 140 par-
ticipants [20]. Dix taches ont été développées pour induire
des émotions en laboratoire. La nature des tiches entraine
des mouvements plus ou moins intenses chez les participants.
Ces déplacements créent des artefacts dans les vidéos, ce qui
complexifie I’extraction du signal PPG. Une premiere phase
de sélection, ol seules les vidéos présentant des signaux PPG
identifiables et de bonne qualité, a été effectuée. Nous avons
ainsi conservé 57 sujets (21 femmes et 36 hommes) pour un
total de 157 vidéos (car plusieurs tiches par sujet). Nous avons
ensuite supprimé les échantillons présentant des signaux de
tension artérielle de référence corrompus on incohérents. Le
listing des participants retenus est disponible sur le site web
du projet (https://github.com/frederic-bousefsaf/ippg2bp). Ce
sous-ensemble a été utilisé pour entrainer les modeles d’TA
présentés dans cette étude.

1. http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.
html
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a partir d’une vidéo tirée de la base BP4D+ (en bleu) accompagné du

signal de tension artérielle (Blood Pressure, BP) de référence (en orange). (b) La tendance basse fréquence du signal PPG est
supprimée par une méthode de filtrage spécifique [[17]. (c) Le signal est séparé en une collection d’extraits de 2.56 secondes. (d)
La transformée en ondelettes continue (CWT) des signaux PPG et de tension artérielle est calculée dans la plage de fréquence
[0.6, 4.5] Hz. (e) La valeur de tension artérielle moyenne du signal de référence étant perdue lors du calcul de la CWT, nous
I’ajoutons a la représentation en ondelettes en 1’additionnant a tous les coefficients. (f) Les représentations en ondelettes du
signal PPG et du signal de tension artérielle sont utilisées pour entrainer les réseaux neuronaux présentés en section

Le signal PPG extrait de chaque vidéo a été découpé en
petits extraits de 2.56 secondes a une fréquence d’échantillon-
nage de 100 Hz (256 valeurs par extrait). Un jeu de 4123
extraits a ainsi été constitué. 70 % du jeu (2887 extraits de
2.56 secondes) sont réservés pour I’entrainement du modele
d’TA, 15 % (618 extraits) pour la phase de validation et 15 %
(618 extraits) pour la phase de test. Les tensions artérielles sys-
tolique (Systolic Blood Pressure, SBP), diastolique (Diastolic
Blood Pressure, DBP) et moyenne (Mean Arterial Pressure,
MAP) ont été calculées a partir du signal de référence fourni
dans la base de données.

B. Constitution du signal PPG

La chaine de traitement est similaire a8 une méthode ré-
cemment proposée par notre groupe de recherche [15]. Nous
avons dans un premier temps utilisé une technique récente
de segmentation du visage reposant sur un modele neuronal
convolutif [21] permettant de segmenter la peau du visage. Ce
modele a déja été utilisé dans le contexte de I’extraction de
signal PPG a partir de vidéos [22]. Le signal PPG est calculé
grice 2 une moyenne spatiale des intensités des pixels de
peau sur le canal vert. la figure B présente un signal PPG
brut calculé a partir d’une des vidéos de la base BP4D+. Les
signaux sont ensuite rééchantillonnés sur 100 Hz. Un algo-
rithme spécifique de suppression de tendances [|17] permettant

d’atténuer les basses fréquences du signal est appliqué. la
figure [3p montre I"impact de cette opération sur le signal PPG.
Les extraits de 2.56 secondes sont ensuite calculés sur le signal
PPG estimé a partir des vidéos ainsi que sur les signaux de
tension de référence (voir figure B¢ pour un exemple). Les
signaux PPG ont été standardisés via la formule du z-score
(u = 0et o =1). Les jeux d’entrainement, de validation et de
test ont été constitués a partir de tous ces extraits (voir section

[T-AD.

C. Transformée en ondelettes continue

La transformée en ondelettes continue (Continuous Wavelet
Transform, CWT) du signal PPG et de tension artérielle
(Blood Pressure, BP) est utilisée pour entrainer le modele
neuronal présenté en section [[II-D] Une illustration générale
de I’approche est présentée en figure 5] La CWT d’un signal
correspond a une représentation temps-fréquence calculé a
partir d’une fonction prototype appelée aussi ondelette mere.
Contrairement a la transformée de Fourier, la CWT permet de
détecter des changements abrupts de fréquence a I’aide d’une
famille d’ondelettes calculée a partir de 1’ondelette mere [15]].

La CWT des signaux PPG et de tension artérielle est
calculée dans la plage de fréquence [0.6, 4.5] Hz (plage
des fréquences cardiaques chez 1’étre humain). La valeur de
tension artérielle moyenne du signal de référence étant perdue



lors du calcul de la CWT, nous ’ajoutons a la représentation
en ondelettes en I’additionnant a tous les coefficients (voir

figure Bp) :

CWigp =CWT1p+ iBp (1

Ici, upp correspond a la valeur moyenne du signal de ten-
sion artérielle et CWTgp aux coefficients de la transformée
en ondelettes de ce méme signal. Les CWT ont une dimension
de 256 x 256 x 2 pixels. Elles sont utilisées pour entrainer le
modele d’IA présenté dans la prochaine section.

D. Modele d’IA

L’ architecture neuronale développée dans ce travail a d’ores
et déja été proposée et testée dans un travail de recherche
précédent [15]. I1 s’agit d’une version modifiée du réseau
U-Net initialement proposé par Ronneberger et al. [23] et
soutenue par une ossature pré-entrainée (backbone). Ce type
de réseau est tres utilis€ dans le milieu médical pour des
tiches de segmentation sur des scanners [24f]. L’architecture
est composée d’une partie descendante (encodeur) complétée
par une partie ascendante (décodeur), donnant ainsi une forme
en U au réseau. La branche descendante contient un ensemble
de couches convolutive et de sous-échantillonnage (pooling).
La partie ascendante integre des couches de déconvolution
connectées aux convolutions de la partie descendante. Une
vue schématique du réseau a été présentée en figure[I] Chaque
couche convolutive intégre un noyau de taille (3,3) couplé a
une fonction d’activation Rectified Linear Unit (ReLU).

Une ossature correspond a un réseau (e.g. VGG16 ou Re-
sNet) pré-entrainé sur des bases de données d’images trés vo-
lumineuse telle qu’ImageNet [25]. Cette ossature est intégrée
dans la partie descendante du réseau U-Net et 1’entrainement
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ascendante. Nous avons, dans ce travail, initialisé le réseau
U-Net avec une ossature ResNeXt101 [26]]. Le nombre de
variables modifiables pendant I’entrainement (poids et biais)
est de 53 millions. Le choix de cette ossature particuliere
est motivé par les conclusions de notre précédent travail ou
les différentes ossatures les plus couramment utilisées ont été
comparées [15].

La transformée en ondelettes (passée en entrée et prédite
en sortie du réseau) contient une partie réelle et une partie
imaginaire. Elle est donc définie sur deux canaux. Le carré
moyen des erreurs (Mean Square Error, M SFE) a été retenu
en tant que fonction de cout pour I’entrainement du modele :

1 N2
MSE ==%" (ewT:,; - CWTy;) 2)

ij

CWTT correspond a la transformée en ondelettci_dl signal
de tension artérielle de référence (voir figure ). CWT estla
représentation en ondelettes prédite par le réseau de neurones
(a partir de la CWT du signal PPG).

L’'implémentation de I'TA a été effectuée sous Python via
I’API Keras et la bibliotheque Tensorflow. La librairie |Seg-
mentation Models [27] proposée par P. Yakubovskiy a été uti-
lisée pour développer 1’architecture neuronale. L’entrainement
a été lancé sur 500 époques via des lots de 16 images.

IV. RESULTATS ET DISCUSSION

Le réseau U-Net transforme un signal PPG, estimé a partir
d’une analyse sur la vidéo de la personne, en un signal de
tension artérielle par le biais de leurs représentations en onde-
lettes. La figure [] illustre des exemples typiques d’estimation.
Nous observons une similitude entre les signaux prédits et de
référence. Les amplitudes et les formes d’onde prédites sont
généralement bien retranscrites, en particulier au niveau des
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FIGURE 4: Exemples typiques de tensions artérielles continues prédites par le réseau U-Net pour différentes fréquences
cardiaques. En haut : signaux PPG mesurés par caméra. En bas : tensions artérielles prédites et de référence.


https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models

pics maximums (qui serviront a calculer la tension systolique)
et des pics minimums (tension diastolique). Nous avons évalué
les performances globales a I’aide des standards internationaux
[28]], [29]] définis par 1’ Association for the Advancement of
Medical Instrumentation (AAMI) et par la British Hyperten-
sion Society (BHS). Nous soulignons toutefois que la base
BP4D+ contient des vidéos et données physiologiques qui
n’ont pas été enregistrées dans un contexte clinique. Aussi,
le sous-ensemble constitué pour I’étude (voir section [[II-A)
integre 57 participants la ou ’AAMI recommande d’évaluer
les techniques d’estimation de la tension artérielle sur un
minimum de 85 sujets.

A. Métriques générales

L’erreur absolue moyenne (Mean Absolute Error, M AFE,
equation[3) et la racine carrée de I’erreur quadratique moyenne
(Root Mean Square Error, RM SFE, equation EI) sont utilisées
pour quantifier la concordance entre le signal de tension prédit
par le modele d’'IA (BP) et la référence (BP). Nous avons
calculé ces métriques pour la DBP, MAP et SBP sur tous
les extraits du jeu de test. Les résultats sont reportés dans le
tableau [} Une analyse comparative présentant les résultats des
études proches est proposée.

1< _—
MAE = =) |BP; - BP| 3)
n “
=1
1 & 1\ 2
RMSE = | -3 (BP - BP) (4)
i=1
MAE (mmHg) | RMSE (mmHg)
Rong et DBP 7.59 -
Li [30] SBP 9.97 -
Schrumpf DBP 10.3 -
et al. [31] SBP 13.6 -
iPPG2BP DBP 5.1 6.85
(résultats de | MAP 4.47 6.01
cette étude) SBP 6.73 9.34

TABLE I: Erreurs sur les estimations de la tension artérielle.
Les métriques ont été calculées entre le signal de tension prédit
par le modele d’IA et le signal de référence. les résultats des
études proches sont présentés a titre de comparaison.

B. Métrique de la BHS

La BHS évalue les techniques estimant la tension artérielle
par le pourcentage cumulatif des erreurs [28[]. Trois niveaux
de performance (A, B et C) ont été établis (voir tableau @)
Le niveau est calculé en fonction des prédictions sur le jeu
de test dont la valeur doit étre inférieure a trois seuils définis
empiriquement : 5, 10 et 15 mmHg. Le tableau [[I] présente en
plus les résultats de I’étude de Rong et Li [30], seule étude a
notre connaissance a avoir calculé les métriques du BHS sur
des estimations basées sur des signaux PPG mesurés a partir
d’une analyse vidéo.

Les résultats de la méthode que nous proposons sont tout a
fait intéressants : plus de 60 %, 87 % et 95 % des échantillons

de la base de test présentent des erreurs respectivement infé-
rieures a 5, 10 et 15 mmHg pour la DBP et la MAP (niveau
A). Plus de 50 % and 79 % des prédictions de la SBP sont
situées sous les 5 et 10 mmHg (grade B) tandis que 89.6 %
des prédictions sont sous la barre des 15 mmHg, ce qui est
tres proche du seuil de 90 %.

Pourcentage d’erreur

<5mmHg | <10 mmHg | < 15 mmHg
Rong et DBP 55.4% 85.7% 98.2%
Li [30] SBP 48.2% 78.6% 94.6%
iPPG2BP DBP 60.2% 87.1% 95.8%
(résultats de MAP 66.8% 90.9% 96.4%
cette étude) SBP 50.2% 79.0% 89.6%
niveau A 60% 85% 95%
BHS niveau B 50% 75% 90%
niveau C 40% 65% 85%

TABLE II: Métriques du BHS sur les prédictions de la DBP,
MAP et SBP.

C. Métriques de ’AAMI

L’AAMI propose d’évaluer les techniques d’estimation de
la tension en analysant I’erreur moyenne (Mean Error, ME) et
I’écart-type des erreurs (Standard Deviation of Errors, SDE)
sur le jeu de test [29]. La technique doit présenter une ME
inférieure 2 5 mmHg et un SDE inférieur 2 8 mmHg pour
pouvoir respecter le standard international.

Le tableau [ITl] présente les résultats de 1'évaluation selon
les criteres présentés précédemment. Nous avons reporté les
valeurs présentées par Luo et al. [32] et Rong et Li [30].
Nos résultats se situent globalement sous les seuils pour la
DBP et la MAP. La ME est faible et le SDE est inférieur a 8
mmHg. Nous pouvons remarquer que les prédictions de la SBP
présentent une ME faible mais un SDE légerement supérieur
au seuil de 8 mmHg. Nous notons que les techniques dédiées a
la conversion du signal de tension artérielle a partir du signal
PPG en contact [33] produisent aussi des estimations de la
SBP plus erronées que les estimations de la DBP.

ME (mmHg) | SDE (mmHg)

DBP -0.20 6.00
Luo et al. [32] SBP 039 730
. DBP 0.79 2.58
Rong et Li [30] | pp 2.1 335
iPPG2BP DBP -1.001 6.781
(résultats de MAP -0.205 6.007
cette étude) SBP 1.51 9.221

[ Standard AAMI [ <5 [ <38 |

TABLE III: Métriques de I’AAMI sur les prédictions de la
DBP, MAP et SBP. ME : Mean Error (erreur moyenne). SDE :
Standard Deviation of Errors (écart-type des erreurs).

V. CONCLUSION

Nous avons proposé, dans cet article, une solution basée sur
I'TA permettant d’estimer la tension artérielle a partir d’une
vidéo délivrée par une caméra. Cette estimation est effectuée
par le biais d’un réseau de neurones en forme de U et de la
représentation en ondelettes du signal PPG sans contact, ce



signal ayant été calculé par analyse vidéo. Il s’agit a notre
connaissace de la premiere étude proposant une estimation
d’un signal de tension artérielle continu a partir d’une vidéo.

Cette recherche permet d’envisager une détection précoce
de I’hypertension ainsi que d’autres pathologies cardiovascu-
laires avec un moyen bas-colit et d’ores et déja accessible.
Dans le domaine du handicap, ces résultats sont tout autant
pertinents, certaines pathologies cardiovasculaires apparaissant
en moyenne plus fréquemment que chez les sujets sains [2].
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Résumé

Nous présentons dans ce papier une nouvelle architecture de bout en bout basée sur
un réseau de neurones spatio-temporel profond pour I'estimation de la fréquence
cardiaque a partir des trames vidéo issues d’une webcam bas coilit. Contrairement aux
méthodes existantes, nous estimons la valeur de la fréquence cardiaque directement sans
passer par I'extraction du signal iPPG et sans incorporer de connaissances préalables ou
d'étapes de traitement supplémentaires. Nous avons construit notre réseau en utilisant des
couches de convolution séparable en profondeur 3D avec des connexions résiduelles pour
extraire simultanément des caractéristiques spatiales et temporelles. Ceci est tres
approprié pour la mesure en temps réel car le modéle nécessite un nombre réduit de
parametres et un court fragment vidéo. Les résultats obtenus semblent trés satisfaisants
et prometteurs, d'autant plus que les expériences ont été menées sur des ensembles de
données collectés dans des conditions non contrdlées. La mesure de paramétres
physiologiques sans contact est a la fois prometteuse et pertinente dans le contexte du
suivi de I'évolution de maladies invalidantes. Les avancées récentes sont aujourdhui
intégrées dans des systemes d'assistance a la personne et sont utilisées durant les séances
de thérapie par réalité virtuelle.

Mots-clés : fréquence cardiaque; sans contact; webcam; iPPG; réseaux de neurones convolutifs.

1 Introduction

Selon les derniéres statistiques de I'Organisation Mondiale de la Santé, les maladies
cardiovasculaires sont la premiére cause de déces dans le monde (World Health Organisation, 2018).
Elles augmentent avec l'augmentation de la population, I'obésité et la sédentarité. Le contrbéle non
optimal de ces maladies est responsable de 70% des accidents vasculaires cérébraux, de 50% des crises
cardiaques et de plusieurs cas d'insuffisance rénale. Ce type de maladies est souvent asymptomatique
ce qui nécessite un contréle périodique et a long terme via des mesures fréquentes de I’activité cardiaque
afin de les prévenir et de mieux les prendre en charge.

L'électrocardiographie (ECG) et la photopléthysmographie (PPG) sont les principaux moyens pour
la mesure de I’activité cardiaque. Les deux techniques utilisent des capteurs en contact qui doivent étre
attachés aux parties du corps et nécessitent le respect de certaines conditions pour obtenir de bonnes
mesures. Malgré la grande précision et la robustesse fournies par ces dispositifs intrusifs, le contact
avec la peau peut étre génant voire infaisable en raison de certains cas critiques citons par exemple les
bralures, les ulcéres cutanés, les maladies contagieuses (Sun, 2016). Par conséquent, ces différentes
limites, ainsi que la forte demande pour une technologie fiable, confortable, simple, portable, non



stressante et peu codteuse, ont incité les chercheurs a développer de nouvelles techniques de mesure
sans contact des signaux physiologiques.

Au cours de la derniere décennie, de grands progres ont été réalisés pour I'estimation sans contact
des parameétres vitaux tels que la fréquence cardiaque a I'aide de la photopléthysmographie par imagerie
(iPPG) pour surmonter les faiblesses des dispositifs invasifs. La iPPG est une technique optique
permettant une évaluation a distance de ’activité cardiaque en observant les variations du volume
sanguin sur le visage d'une personne a l'aide d'une simple caméra bas co(t. Cette technique est trés
prometteuse en santé publique, en particulier dans le contexte du vieillissement et des maladies
invalidantes. Elle est désormais intégrée aux technologies d’assistance (Tagnithammou, 2021).

Les algorithmes d’iPPG classiques sont basés sur des approches conventionnelles qui impliquent
généralement des pipelines a plusieurs étages et nécessitent plusieurs étapes de traitement d'image et de
signal (Bousefsaf, 2013; de Haan, 2013; Poh, 2010). Ces méthodes ont été mises en ceuvre dans des
scénarios contraints et reposent sur certaines hypothéses concernant I'interaction lumiére-peau et les
mouvements de la téte. Par conséquent, la plupart des méthodes proposées fonctionnent
raisonnablement bien sur des ensembles de données collectées dans des environnements contrdlés, mais
les performances se dégradent considérablement dans des scénarios réels.

Avec le grand succes de I'apprentissage profond pour les taches d'imagerie médicale et de vision par
ordinateur, les travaux récents ont incorporé des architectures d'apprentissage profond a différentes
étapes du pipeline de photopléthysmographie conventionnelle (Chen, 2018; Niu, 2020; Yu, 2019). Bien
que les méthodes proposées permettent d’extraire avec précision le signal iPPG, mais plusieurs limites
restent a surmonter. Tout d’abord, ces systémes ne sont pas de bout en bout, ce qui nécessite encore des
étapes de pré-traitement ou de post-traitement supplémentaire. De plus, la fréquence cardiaque doit étre
mesurée méme dans des scénarios non controlés. De nombreuses situations peuvent impacter la mesure
. la personne peut bouger la téte ou exprimer des émotions, son visage peut étre partiellement occlus ou
les conditions d'éclairage peuvent changer en permanence. Cela peut affecter la qualité du signal iPPG
extrait et donc dégrader la précision des résultats.

Pour remédier a ces faiblesses, nous avons développé une méthode d'apprentissage profond de bout
en bout pour I'estimation instantanée de la fréquence cardiaque directement a partir des séquences vidéo
faciales. Notre architecture est entierement automatique et ne nécessite aucune connaissance préalable
ni aucun pré-traitement ou post-traitement particulier. Elle se concentre automatiquement sur les zones
les plus vascularisées du visage, analyse les subtiles variations de couleur sur ces régions pour enfin
estimer la fréquence cardiaque correspondante.

Réseau de neurones profond

e 3D Xception Net Couche Dense w
51 nentation e

Extracteur de caractéeistiques IPPG Estimateur de [
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Imagas brutes {50,120.160,3)

Figure 1 : Apergu de notre solution proposée pour I’estimation de la fréquence cardiaque instantanée.

2 Matériel et Méthodes

Le framework général de notre méthode est illustré dans la figure 1. Nous considérons la tache
d'estimation de la fréquence cardiaque & partir de vidéos faciales comme une tache de régression en une
étape. Une segmentation du visage est effectuée en premier lieu pour éliminer le fond et les zones non
cutanées (Nirkin, 2017). Ensuite, sans aucune étape de prétraitement ou de post-traitement
supplémentaire, des lots de 50 images (correspondant a 2 secondes) sont introduits dans un réseau 3D
entierement convolutif pour estimer la fréquence cardiaque correspondante.



2.1 Base de données

Pour fonctionner avec précision dans des scénarios bien contrélés ainsi que dans des scénarios
difficiles, nous avons entrainé notre modele sur une base de données publique a grande échelle (nommée
BP4D+). Cette base de données est dédiée principalement a la reconnaissance multimodale des
émotions spontanées a l'aide d'expressions faciales et de paramétres physiologiques tels que la
fréquence cardiaque (Zhang, 2016). Par rapport aux bases de données de fréquence cardiaque existantes,
BP4D+ est considérablement plus importante en termes de quantité de données et de diversité ethnique
(nair, blanc, asiatique, hispanique/latino). Cette base de données peut ainsi fournir un apprentissage
plus robuste car elle contient de nombreuses scénarios difficiles tels que des mouvements significatifs
de la téte, des expressions faciales et des variations de fréquence cardiaque importantes, ainsi qu’une
importante diversité en termes de teint de peau qui n'est pas disponible dans les autres bases de données

2.2 Segmentation du visage

L'extraction des régions d'intérét (ROI) est la premiére étape de tous les systémes de mesure de la
fréquence cardiaque par caméra (Niu, 2020; Poh, 2010; Yu, 2019). Elle vise a maximiser le rapport
signal/bruit (SNR) en éliminant les régions non cutanées qui ne contiennent aucun changement de
couleur associé au rythme cardiaque. A notre connaissance, la plupart des systémes iPPG existants
basés sur I'apprentissage profond ont utilisé soit le visage entier, soit une région du visage sélectionnée
grace a des connaissances empiriques. Plusieurs détecteurs de visages et de repéres faciaux ont été
utilisés pour localiser la ROI (King, 2009; Viola and Jones, 2004; Zhang, 2016). Cependant, ils
échouent souvent lorsque les visages présentent des mouvements de téte importants, des variations de
pose, des occlusions ou des expressions faciales. De nombreux autres défis affectent également la
capacité d'extraction de la ROI, tels que la couleur de peau, I'éclairage et I'arriére-plan.

Pour surmonter les limitations des algorithmes de détection de visage, nous effectuons une
segmentation de visage en utilisant un algorithmes de 1’état de I’art proposé initialement pour I'échange
de visage (Nirkin, 2017). Cette méthode fonctionne idéalement dans toutes les conditions mentionnées
ci-dessus sans manquer aucune image. Les visages sont correctement segmentés des arriére-plans et des
occlusions avec une grande précision.

2.3 Architecture

Le réseau proposé est inspiré de 1’architecture Xception (Chollet, 2017) qui utilise la convolution
séparable en profondeur (CSP) au lieu de la convolution classique. Cette derniére est couteuse en termes
de temps de calcul et de besoins en mémoire. L'architecture globale de notre modele est composée de
36 couches convolutives structurées en 14 modules, tous liés par des raccourcis comme dans les réseaux
ResNet a l'exception du premier et du dernier module (figure 2). Le réseau étant tres profond, ces
connexions résiduelles permettent d'éviter le probléme de disparition du gradient. Chaque CSP est
suivie d'une normalisation par lots pour stabiliser le processus d'apprentissage et accélérer la
convergence, et également une fonction d'activation ReLU pour effectuer une cartographie non linéaire.
La sortie de I'extraction des caractéristiques est aplatie et introduite a deux couches denses avec
respectivement 1024 et 1 neurones, pour estimer la valeur de la fréquence cardiaque.

2.4 Implémentation

Le modéele proposé est mis en ceuvre a 1'aide du framework Keras et tensorflow, et exécuté sur
NVIDIA Quadro P400. Pour toutes les expériences, I’entrée est fixée a 50 images. Inspiré par la
procédure d'optimisation SWATS (Keskar, 2017), nous commengons 1’apprentissage avec 1'optimiseur
Adam rectifié (RAdam) (Liu, 2020), et nous passons a la descente de gradient stochastiques (SGD)



lorsque la précision de I'ensemble de validation cesse de s'améliorer. Nous entrainons le réseau pendant
25 époques avec une taille de lot de 64. Le taux d'apprentissage a été fixé a 10™*. En plus d'une couche
dropout d’un ratio de 0,4 appliqué avant la couche dense finale du réseau, des stratégies de
régularisation L1 et L2 sont utilisées, ce qui permet de surmonter le probléme de surapprentissage et
d'améliorer la capacité de généralisation du modele a de nouvelles données.
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Figure 2 : L'architecture proposée : Elle correspond a une version modifiée du réseau Xception. L’entrée
passe d'abord par le flux d'entrée, puis par le flux intermédiaire qui se répéte huit fois, et enfin par le flux de
sortie qui régresse la valeur de la fréquence cardiaque.
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3 Résultats

Afin d'étudier la capacité de généralisation et I'efficacité du modéle proposé présenté, trois bases de
données ont été utilisées, a savoir MMSE-HR (Zhang, 2016), MAHNOB-HCI (Soleymani, 2012) et
UBFC-RPPG (Bobbia, 2017). MMSE-HR est directement utilisée pour les tests sans aucun traitement
supplémentaire car elle a été collectée dans les mémes conditions que la base d'apprentissage. Alors
gque UBFC-RPPG et MAHNOB-HCI sont sous-échantillonnés de 30 fps et 61 fps respectivement a 25
fps. Nous évaluons les performances de notre approche avec d'autres techniques de 1’état de I’art en
utilisant différentes métriques. Les résultats de comparaisons présentés dans les tableaux suivants
montrent la grande précision de notre méthode qui surpasse tous les algorithmes de I'état de 1’art.

Méthode MAE (bpm) RMSE (bpm) r

PhysNet 12.76 13.25 0.44
SAMC 12.24 11.37 0.71
RhythmNet 6.98 7.33 0.78
AutoHR 571 5.87 0.89
Méthode proposée 4.13 5.34 0.89

Tableau 1: Cross-dataset sur MMSE-HR.



Méthode MAE (bpm) RMSE (bpm) r

rPPGNet 5.51 7.82 0.78
SAMC 4.96 6.23 0.83
AutoHR 3.78 5.10 0.86
RhythmNet - 3.99 0.87
Méthode proposée 3.17 3.93 0.88

Tableau 2 : Résultats sur MAHNOB-HCI.

Méthode MAE (bpm) RMSE (bpm) std
Green 10.2 20.6 20.2
POS 5.12 10.5 10.4
3DCNN 5.45 8.64 8.55
PRNet 5.29 7.24 6.45
Méthode proposée 4.99 6.26 6.25

Tableau 3 : Résultats sur UBFC-RPPG.

4 Conclusion et Perspectives

Dans cet article, nous proposons une nouvelle architecture de bout en bout basée sur un réseau
spatio-temporel profond qui prédit la fréquence cardiaque sans passer par 1’extraction du signal iPPG
et sans utiliser des connaissances préalables. Le réseau proposé s'inspire d'un modéle Xception qui s'est
avéré efficace pour les bases de données d'images 2D a usage général en termes de précision, de vitesse
de convergence rapide et de faibles colts de calcul. Nos expériences approfondies ont montré I'efficacité
de notre approche qui atteint une plus grande précision et surpasse les méthodes existantes sur trois
ensembles de données de référence populaires tels que MMSE-HR, UBFC-RPPG et MAHNOB-HCI.
Cependant, nous avons identifié plusieurs problémes qui peuvent encore étre améliorés dans des études
futures. Premiérement, les mauvaises performances des techniques d'apprentissage profond pour les
échantillons minoritaires dans le cas d'ensembles de données déséquilibrés qui sont fortement biaisés
vers une peau plus claire et des fréquences cardiaqgues moyennes. L'application de stratégies avancées
d'augmentation des données ou l'utilisation de données synthétiques pourrait améliorer encore les
performances en augmentant le nombre d'échantillons pour les peaux foncées ou pour les fréquences
cardiaques faibles et élevées. De plus, nous avons remarqué un taux élevé de valeurs aberrantes et de
signaux PPG de mauvaise qualité dans les bases de données que nous avons utilisées. La préparation et
le nettoyage des données avant la formation sont essentiels pour entrainer correctement le réseau et
éviter les problémes de surapprentissage. Enfin, les réseaux existants sont souvent constitués d'un grand
nombre de paramétres et nécessitent des colts de calcul élevés, entravant largement son application sur
des appareils a faible consommation d'énergie tels que les téléphones portables. Par conséquent, I'étude
de modeles de réseau légers peut considérablement améliorer la vitesse et la précision tout en
maintenant des performances similaires ou meilleures.

Nos travaux futurs aborderont les problémes mentionnés ci-dessus pour construire une architecture
sophistiquée qui fonctionne avec précision dans des situations réalistes.
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