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Abstract— The control of an active prosthetic elbow is
problematic for most transhumeral amputees and a functional
solution providing intuitive control over active multi-joint
prosthetic upper limbs is yet to be found. The method in
this paper uses IMU-based upper arm kinematics to predict
the elbow motion based on upper limb joint coordinations
during pointing movements. A RBFN-based regression was
performed to model the shoulder/elbow coordination. The
prediction results indicate that such an approach is ready to
be implemented on current transhumeral prostheses equipped
with embedded motion sensors like IMUs. Different algorithm
training methods to obtain better prediction performance are
also investigated.

I. INTRODUCTION

For the past fifty years, the progress of mechatronics
has permitted the development of more and more anthro-
pomorphic prosthetic limbs, especially prosthetic hands [1].
However, few solutions have been developed for patients
with transhumeral or higher amputation levels: there are
passive prosthetic elbows, like the 12K44 ErgoArm R©Hybrid
Plus (Ottobock c©) that can be locked manually into a desired
position, and a limited number of active prosthetic elbows,
like the DynamicArm 12K100 (Ottobock c©), and the Uta-
hArm3+ (Motion Control, Inc.). Most transhumeral amputees
report that their prosthesis is lacking functionality, and that it
does not provide the expected assistance in Activities of the
Daily Living (ADLs) [2]. A counter-intuitive control strategy
is often cited as a limiting factor of prosthesis usage.

The most common method to control an active pros-
thetic upper limb is myoelectric control. Contractions of
two antagonistic residual muscles (biceps and triceps brachii
for transhumeral amputees), measured with surface elec-
tromyographic (sEMG) electrodes, are directly controlling
a prosthetic function, such as hand opening/closing, or wirst
pronosupination. A co-contraction (i.e. simultaneous con-
tractions of antgonistic muscles), or combination of muscle
contractions, is then required to switch from one mode (e.g.
hand closing/opening) to another (e.g. internal/external wrist
rotation). Myoelectric control is limited by the influence
of EMG signals to electrodes placement, skin impedance,
muscle fatigue, and signal filtering, and thus, has been for
a long time used as an on/off control stategy, even if more
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advanced methods have been developed in the last decades
[3]. Although the number of degrees of freedom (DoFs) to
control increases with the amputation level, the same on/off
control strategy is applied to forearm and arm prostheses,
yielding a dimensionality issue with more controllable out-
puts than control inputs. Transhumeral amputees eventually
achieve good control of hand and wrist, but have difficulties
in general when an active myoelectrically-controlled elbow
is added to the prosthetic arm. Arm amputation level has a
strong influence on the affected person’s ability to perform
ADLs, and compared to lower amputation levels, the com-
pensatory strategies developed by transhumeral amputees to
overcome the impairment involve significantly more the rest
of the body, causing shoulder, back, and contralateral limb
disorders [4]. Numerous studies have investigated alterna-
tives to bi-electrodes myoelectric control, such as solutions
based on ultrasound signal [5], myokinemetric signal [6],
myokinetic signal [7], mechanomyographic signal [8], and
residual limb motion [9], [10]. One possible and yet less
explored solution relies on the use of residual limb motion
and the knowledge of human upper limb motor control to
design a more natural control strategy.

The human upper limb is characterized by its number
of degrees of freedoms (DoFs) (9, including the scapula
elevation and protraction), greater than the required number
to position and orientate the hand in a 3D space. Upper
limb prosthetics are built with numerous DoFs in order to
duplicate the human arm mobility. A big issue of replicating
the human upper limb behavior is to find the most natural
kinematic solution for the given number of DoFs despite
the redundancy of human arm motion. Instead of consid-
ering motor control as a single input (neural signal-single
output) (one muscle) control scheme, human arm motion
is explained in several studies by a coordination between
joint kinematics that depend on the performed task [11],
[12]. Previous analyses of upper limb movements during
reaching or grasping tasks have shown evidence of recurrent
patterns in joint kinematics, for instance between wrist and
fingers [13], as well as between movement direction and hand
azimuth [14], and humeral inclination and elbow flexion [15].
This coordinated joint motion yields intuitive upper limb
motion during which one focuses only on hand action.

Intuitiveness is a sought characteristic for upper limb
prosthetic control, and the joint coordination approach is a
promising solution in which a prosthetic joint is controlled
automatically based on natural relationships between joints.
Researchers have been trying to model the coordination
between upper limb joints, and several regression tools have
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been used in the literature to model the mathematical rela-
tionship between proximal and distal joints motion. Principal
Component Analysis (PCA) is a common approach, although
linear, to model inter-joint relationship: it is applied in [16] to
lower limb prostheses to predict distal joint motion. Although
prosthetic lower limbs are active as well, their control scheme
uses the repeatability of the human walking pattern, and thus,
it is easier to predict the knee motion based on the analysis
of the healthy contralateral lower limb joints. Prediction
of upper limb distal joints is complicated by the fact that
the system does not know what activity the user wants to
perform with the prosthesis. A solution is to model the
human upper limb control strategy for different tasks (e.g.
reaching). The study in [17] used Inertial Measurement Units
(IMUs) to measure the upper limb joints angles; a correlation
was found between humeral inclination and wrist rotation,
but the inter-joint relationship was not modeled. Since the
function that relates upper limb kinematics is likely to be
nonlinear, Artificial Neural Networks (ANNs) are best suited
to approximate the relationship between shoulder and elbow
kinematics. The ANN architecture is tested in [18] where
data are acquired for a pointing task in a 3D workspace.
The selected inputs/outputs combination for the ANN would
require the measurement of 3 shoulder angles (humeral
inclination, humeral longitudinal axis direction, humeral ro-
tation), and 2 shoulder translations (protraction/retraction,
and elevation/depression), which is difficult to achieve in
non-laboratory environments. Also, movements towards the
numerous targets were performed only once, which suggests
that human variability was not taken into account. Upper
limb joints coordination for various ADLs are modeled in
[19] using Radial Basis Function Networks (RBFNs), but the
manipulated objects’ positions remained in a 2D workspace
and the established model requires that the direction in
which the prosthesis user wants to point is known prior
the initiation of movements. Popović et al. in [20] fed a
similar ANN architecture with goniometer-based upper limbs
measurements to investigate the coupling between shoulder
and elbow angular velocities. Nevertheless, none of these
methods has been tested in a real case scenario, when
camera-based motion capture systems are not available.

The approach presented in this paper uses upper limb coor-
dinations from two different individuals to predict accurately
the elbow flexion kinematics during pointing movements
in a 3D workspace. In order to fullfil the embodiment
requirements of prosthetic devices, one IMU is utilized to
measure the humeral orientation, represented by the humerus
inclination and direction angles, inputs of the RBFN-based
regression algorithm that is performed on recorded data to
model the relationship between shoulder and elbow angular
velocities. The experimental setup, data recording and analy-
sis methods are described in Section II. The results, presented
in Section III and discussed in Section IV, demonstrate the
ability of the proposed system to predict the elbow angular
velocity using IMU-based upper arm kinematics.

Fig. 1. Experimental setup. The subject is pointing at a target with a rod
rigidly attached to a wrist splint. The target is presented to the subject by
a WAM robotic arm. The subject is equipped with motion capture sensors
and an x-IMU attached to his arm. The arm and forearm orientation is
represented by the anatomical angles γ, α, and β.

II. MATERIALS AND METHODS

A. Subjects and experimental setup

Two healthy right-handed individuals, female and male,
(age 24 and 31, respectively 1,72 m and 1.90 m) participated
in the study. The experiment consisted in recording upper
limb pointing movements, and lasted about one hour for each
participant. Participants pointed at targets with their right
hand while sitting comfortably on a chair, as illustrated in
Fig. 1. The subjects wore a wrist splint, designed for sport
activities, to prevent wrist flexion, and used a rod rigidly
attached to the splint’s back, instead of their index, to reach
the targets. The targets, a bright push button mounted on a
7-DoF robotic arm (WAMTM arm, Barrett Technology, Inc.),
were randomly presented to the subjects, as shown in Fig.
1; subjects could not predict target locations since they were
shown only one at a time.

B. Experimental protocol

The task consisted in pointing at 13 targets located in front
of the subjects, as illustrated in Fig. 2. Targets were located
within a workspace of size 20x60x60 cm3, and were the same
in the WAM arm reference frame for the two participants;
subject-robot distance was adjusted prior the session such
that subjects reached all targets with maximal arm extension
only. The subjects were asked not to move their trunk during
the experiment. The starting position, to which they had to
come back after each movement, was defined after all sensors
were placed on the subjects: the participants were sitting on a
chair, with their forearm resting on the armrest. No particular
instruction on movement duration or speed was given to the
participants. For each target, the subject stayed for 2 seconds
at the starting position, went towards the target, pushed the
button with the rod tip, stayed immobile for 2 seconds, went
back to the starting position while the robot arm was moving
its end-effector towards the next target position. Each trial
of 13 targets was performed three times with both subjects.
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Fig. 2. Positions of the 13 targets to which each subject pointed at during
each trial. The star-shaped marker denotes the shoulder location.

C. Apparatus

Upper limb movements were recorded using two types of
motion sensors. The first is a camera-based motion capture
system, Codamotion (Charnwood Dynamics Ltd.), that uses
infrared cameras to locate infrared emitting markers placed
on the subjects; 2 cameras were used in the setup and 7
markers were placed on the subject’s right arm, as depicted
in Fig 1. In parallel, an x-IMU (x-io Technologies, Ltd.) was
placed on the subject’s arm, as shown in Fig. 1, and measured
upper arm orientation represented as quaternions using the
embedded sensor fusion algorithm AHRS (Attitude Heading
Reference System) [21]. The x-IMU was reset after marker
placement. The acquisition frequency was respectively 100
Hz for the Codamotion system, and 128 Hz for the x-IMU.

D. Data processing

Data from the two measurement systems were synchro-
nized offline. In order to describe the arm posture, the
shoulder and elbow angles, introduced in [22] and illustrated
in Fig. 1, were utilized with the following notation: γ, the
direction angle, characterized the humerus pointing direction,
α, the inclination angle, represented the angle between the
humeral longitudinal axis and the trunk vertical axis, and β
described the elbow flexion angle. For instance, the angular
configuration (γ,α,β) was (0,90,180) deg in right lateral
shoulder abduction with maximal arm extension, whereas the
starting position corresponded to the angular configuration
(0,0,90) deg.

Shoulder angles were derived from both Codamotion and
x-IMU data, while the elbow angular position was derived
from the Codamotion system. Shoulder and elbow angular
velocities were numerically computed from angular position
measurements. Data were partitioned for each movement (13
targets, 3 trails, 2 subjects, i.e. 78 movements) and low-pass
filtered.

E. RBFN-based regression: training and testing

RBFN-based regression, described in [23] and imple-
mented in a Matlab script, is performed to model the
relationship between (γ̇, α̇) and β̇. This method comprises
two steps: 1) a training phase that uses a training data set
(measured triplets (γ̇, α̇, β̇) to approximate the nonlinear
function that relates shoulder kinematics to elbow angular
velocity, 2) a testing phase that uses the approximated

function to estimate the elbow angular velocity based on
measured shoulder kinematics (γ̇, α̇) from a testing data set.
Four tests were performed to assess the performance of the
modeled function with kinematic information from a selected
trial (13 movements); they are described as following:
• Test A (intra-individual training, intra-individual test-

ing): the training data set comprises data of 2 out of
3 trials from Subject 1 (resp. Subject 2), i.e. 2 x 13
movements. The test is performed on Subject 1’s (resp.
Subject 2’s) remaining trial (i.e. 1 x 13 movements),
and is designated as test A-S1 (resp. A-S2). Results for
each subjects are then averaged (A-av).

• Test B (intra-individual training, inter-individual test-
ing): the algorithm is trained with data from Subject
1’s (resp. Subject 2’s) trials (i.e. 3 x 13 movements),
and is tested on Subject 2’s (resp. Subject 1’s) trials.
Test results are designated as B-S1 (resp. B-S2), and
are then averaged between both subjects (B-av).

• Test C (inter-individual training, inter-individual test-
ing): data from both subjects are mixed in the training
data set, which comprises 5 out of the 6 trials. The
approximation function is tested on the remaining trial;
results are then averaged for all tested trials.

• Test D (spatial generalization): like in test C, the regres-
sion model is obtained from both subjects’ data, except
that some targets are not included in the training data
set: targets number 5, 6, 7, 8, 10, and 11 are removed.
However, the model is tested on the 13 movements of
the remaining trial.

F. Analysis

For each test, predicted elbow angular velocity results
are compared to Codamotion-based elbow flexion angu-
lar velocity. Several metrics are computed to evaluate the
performance of RBFN-based regression, such as the Root
Mean Square (RMS) error between measured and estimated
elbow angular velocity RMSvel, the relative error between
the maximum values of measured and estimated angular
velocities Errpeak, the RMS error between measured elbow
angle and reconstructed elbow angle from integration of
estimated angular velocity RMSpos, and the relative error
between the measured and estimated final angular positions
Errfinal.

III. RESULTS

A. IMU measurements

A comparison between Codamotion- and x-IMU-based
shoulder joint configuration reconstruction is performed after
recording the data, in order to quantify the IMU’s recon-
struction error. The angular position RMS error between
Codamotion and x-IMU-based reconstruction is 21.99 deg
(SD 14.37 deg) for the direction angle, and 2.10 deg (SD
2.22 deg) for the inclination angle. The angular difference
between Codamotion and x-IMU is explained by a constant
drift on the direction angle. Nevertheless, since the upper
limb movement model is developed in the angular velocity
space, the drift has little influence: the angular velocity RMS
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Fig. 3. Example of elbow angular velocity during one out of 13 pointing
movements to represent the intra-individual and inter-individual variability.
The solid lines represent the measured elbow angular velocities for Subject
1 (in blue) and 2 (green) averaged over 3 trials. The shaded areas represent
the standard deviation around the mean value.

Test type Angular velocity errors Angular position error
RMSvel (deg/s) Errpeak (%) RMSpos (deg) Errfinal (%)

A-S1 7.08 29.51 7.18 36.04
A-S2 9.76 20.02 6.94 17.67
A-av 8.42 24.77 7.06 26.85
B-S1 9.61 59.80 10.8 62.06
B-S2 20.6 44.14 19.5 45.77
B-av 15.1 51.97 15.2 53.92

C 7.85 27.61 6.89 28.42
D 7.62 27.84 6.70 28.53

TABLE I
RESULTS OF COMPARISON BETWEEN ESTIMATED AND MEASURED

ELBOW ANGULAR VELOCITY FOR TESTS A, B, C, AND D

error is 2.89 deg/s (SD 5.23 deg/s) for the direction angle,
and 1.67 deg/s (SD 2.95 deg/s) for the inclination angle.

B. Subjects variability

Measured elbow angular velocities were averaged for each
subject, and the corresponding standard deviations were
computed, as illustrated in Fig. 3, to assess the human
movement repeatability. The overall variation around the
elbow angular velocity mean values is 3.61 deg/s (SD 0.002
deg/s), averaged over all trials and all subjects. Peak value of
the angular velocity profile, as well as movement duration,
are important features that determines the elbow movement
amplitude. Thus, the standard deviation of elbow angular
velocities averaged over all trials is computed at the time
when the peak occurred: an overall variation of 11,82 deg/s
for Subject 1, and 30.58 deg/s for Subject 2, was observed
around the mean peak value (averaged over all targets).

C. RBFN-based regression

Results from the intra- and inter-individual tests are
grouped in Table I. For intra-individual training and testing
(test A), the overall elbow angular velocity RMS error is 8.42
deg/s (SD 3.85 deg/s), averaged over the two participants.
The overall final position error, after integration of estimated
angular velocity, is 26.85 % (SD 33.01 %) of measured final
elbow position.

For intra-individual training and inter-individual testing,
training and testing data are taken from data sets of different

Fig. 4. Three-dimensional representation of the RBFN-based function ap-
proximation between shoulder and elbow kinematics. The surface represents
the elbow angular velocity β̇ with respect to humeral pointing direction γ̇
and humeral inclination α̇.

subjects (test B). Testing on Subject 2’s data while using a
Subject 1’s data-based model yields an angular velocity peak
error of 59.80 % (SD 52.92 %) of measured peak angular
velocity. The final position error reaches 53.92 % (SD 49.57
%), averaged over the two subjects.

When training includes trials from both subjects (inter-
individual training and testing, test C), the overall angular
velocity error is 7.85 deg/s (SD 4.00 deg/s), and the position
RMS error is 6.89 deg (SD 4.63). The overall coefficient of
determination between measured and estimated elbow angu-
lar velocity is 0.78. An example of approximation function
for test C, obtained by training the algorithm with data sets
from Subjects 1 and 2, is illustrated in Fig. 4; Matlab surf
method was utilized to represent the model. Fig. 5 depicts
estimated elbow angular velocities using test C-based model:
training is performed on 5 trials (3 from Subject 1’s, 2 from
Subject’s data sets), and model, represented in Fig. 4 is tested
on the 13 target movements of Subject 2’s remaining trial.

Finally, results of generalization tests (test D: inter-
individual training and testing, with a reduced number of
training targets) are similar to test C’s results: the overall
angular velocity RMS error is 7.62 deg/s (SD 3.60 deg/s),
and the final position error is 28.53 % (SD 42.01 %) of
measured final elbow angular position.

IV. DISCUSSION

A. IMU-based arm motion capture

An x-IMU was placed on two subjects’ upper arm, and
its embedded AHRS algorithm reconstructed the humeral
orientation, represented as quaternions, based on a fusion
of accelerometer’s, gyroscope’s and magnetometer’s data.
Afterwards, the humeral orientation was expressed in terms
of anatomical angles, direction and inclination angles. A
Codamotion system was also employed to measure both
the arm’s and forearm’s orientation, and a comparison was
performed between IMU- and Codamotion-based angular
reconstruction. A low error between the two systems in
terms of angular velocity justifies the use of an IMU with
embedded orientation algorithm as a shoulder kinematics
measurement system. The error was higher for the direction
angle because of a constant drift.

Using a prosthesis equipped with an IMU as motion
measurement sensor requires that the system is robust to
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Fig. 5. Elbow angular velocity estimation results for a test on Subject 2’s 3rd trial. Training data from both subjects were used to model relationship
between shoulder and elbow (inter-individual training and testing). Dashed lines represent Codamotion-based elbow angular velocity, and solid lines
represent RBFN-based elbow angular velocity.

internal drift and external perturbation, such as user body
motion (e.g. walking, trunk motion) and external environ-
ment disturbance. Drift-free IMU-based measurement is still
to be achieved for long-term usage, although embedded
algorithms of commercialized sensors are well advanced to
provide satisfying measures. The need for a magnetometer
in the measurement system is demonstrated in [24] where
accelerometer and gyroscope fusion-based measures were
drifting. A suggested solution is to combine multiple IMUs
to cancel effects of external perturbations.

B. Upper-limb coordination-based elbow motion estimation

A RBFN-based regression algorithm was implemented to
model the relationship between shoulder and elbow angular
velocities during a pointing task, and test results from
different training data sets were compared. Intra-individual
training and testing was expected to be the most natural test
(test A): the aim was to learn the coordination pattern of
one subject, and to test the modeled relationship on the same
subject’s data. The results show that the final position error
between measured elbow angular position and the integration
of estimated angular velocity (i.e. reconstructed position)
remains below 10 degrees for tests on both subjects. This
suggests that the presented method is capable of predicting
the elbow motion of one person with an accuracy of 10
degrees during a 3D pointing task when establishing a
model based on this same person’s data; only IMU-based
measurements of humeral inclination and direction were
utilized as regression algorithm inputs. Kaliki et al. in [18]
obtained similar results although they used a camera-based
motion capture system, and more ANN input signals (3
shoulder angles, and 2 shoulder translations) to determine
the elbow angle in a 3D pointing task.

Elbow kinematic information cannot be measured with
transhumeral amputees; hence, algorithm estimation results
must be robust to inter-individual testing, and capable of pre-
dicting elbow angular velocity based on amputees’ residual
arm motion measures using a model that was obtained with
healthy individuals. This property is tested with test B by

training the algorithm on one subject’s data, and by testing
the model on the other subject’s data. High estimation errors
were found: the overall final position error is above 50 %
of the measured elbow angular position. Results show the
algorithm’s inefficiency when compared with data from a
coordination pattern that are not included in the training data
set. This suggests that the participants’ pointing movement
strategies are very different, and that each individual’s natural
coordination pattern may not be generalized, at least not
with the tested coordinations and mapping (elbow flexion
in relation with humeral incination and humeral direction).
Iftime et al. in [19] obtained mixed results for inter-individual
testing: the correlation coefficient value was 0.94 for estima-
tion of elbow angular acceleration for a 2D reaching task
based on shoulder flexion angular acceleration, and -0.96
based on shoulder abduction angular acceleration. However,
they trained the RBFN-based ANN on goniometer-based data
from only one target location and tested the model on the
same target location.

An explanation for unsatisfying test B results is that the
algorithm training did not account for the inter-individual
variability: the algorithm predicted angular velocity val-
ues based on the learned coordination from one subject.
Therefore, a solution to improve the estimation results is
to include inter-subject variability in the training data set.
Test C mixes data from both participants to model the
shoulder/elbow coordination for pointing movements, and
results are comparable to intra-individual test results: the
overall angular velocity error is 7.85 deg/s, and the final
elbow position error is below 30 % of measured elbow angle,
which is slightly above the final position error for intra-
individual training and testing (26.85 %). Even though the
preceding test indicate that the algorithm is unable to predict
the elbow motion pattern if it was not in the training data
set, the last results suggest that it is capable of distinguish
between the different coordinations included in the training.
Better results could also be expected if more coordination
patterns are included in the training data set.

Previous tests were performed on arm movements towards
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targets that were included in the training data set, from the
same subject or not: the workspace explored during testing
is discretized and the results do not allow to conclude on
the system response in a real prosthesis application, where
workspace is continuous. The prosthesis user must be able to
bring the prosthetic hand to a location that was not included
in the training data set, i.e. in between target locations that
were included. Test D justifies the algorithm’s ability to
predict elbow motion for movements towards targets which
it was not trained on. Results are close to inter-individual
training and testing results (test C): even though the angular
velocity RMS error is less than the one of test C, final
elbow position error, below 30 % of measured elbow angle,
is slightly above test C’s final error. These results, almost
as good as intra-individual training and testing tests, suggest
that the algorithm is possibly overtrained, i.e. that it does not
need that much training information to predict accurately
the elbow angular velocity. There were between 400 and
500 target locations distributed in the workspace in front of
subjects in the study in [18] that also tested ANN gener-
alization property; in comparison, the regression algorithm
in our study was trained on only 7 pointing movements
from both subjects. By using an angular velocity-based
model, initial position is unconstrained and movements from
different starting positions could be performed; in addition,
IMU-based drift effects are canceled.

C. Towards implementation on prostheses

Data sets from two different individuals were successfully
put together to estimate the elbow motion for a pointing task
at 13 targets. Results of this study highlight the importance
of algorithm training data set: including data from more than
one subject yields good performances, and reducing the data
training set to a smaller number of targets could improve the
performance thanks to the model’s generalization property
between target locations.

Future work will be focused on the effect of the chosen
input signal set on the algorithm’s performance. In this study,
humeral direction and inclination were chosen to estimate the
elbow flexion angular velocity, but different and more input
signal combinations could have been used. The pointing
task is too restrictive in ADLs, and therefore, an important
extension of this work is to verify the performance of such
an architecture to model coordination patterns in different
ADLs that are more common in daily prosthetic usage.
Moreover, difference between amputees and healthy indi-
viduals humeral movements should be taken into account:
important differences in the coordination patterns and in the
arm segment motion should be expected because of motor
compensation strategies. Since real time accurate orientation
estimation is possible with current IMUs, usage of inertial
sensors in prosthetics will increase in a close future.
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