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A Bordeaux, 

Le 30 Janvier 2017 

 

Madame, Monsieur, 

 

Veuillez trouver ci-après mon dossier de candidature au pris IFRATH-KAELIS 2016. 

J’ai effectué, entre 2013 et 2016, un Doctorat International (label Européen) en Sciences Cognitives, 

financé par l’IdEx de l’Université de Bordeaux sur le thème des Interfaces Cerveau-Ordinateur. L’objectif 

était de mieux comprendre et d’améliorer le processus d’apprentissage de l’utilisation d’une interface 

cerveau-ordinateur, de manière à rendre ces technologies plus fiables, efficientes et donc accessibles, 

notamment pour les patients atteints d’un handicap moteur sévère. J’étais rattachée à 2 équipes de 

recherche : le laboratoire Handicap, Activité, Cognition, Santé de l’Université de Bordeaux et l’équipe-

projet Potioc d’Inria Bordeaux Sud-Ouest. J’ai aussi effectué 6 mois de mobilité dans le laboratoire de 

mon codirecteur, actuellement rattaché au Interact Lab de l’Université du Sussex, en Angleterre, et 1 

mois de mobilité dans le laboratoire GDAC avec Pr. Roger N’Kambou, UQAM, Canada. Ce doctorat était 

dirigé par : 

Pr. Bernard N’Kaoua – Professeur des Universités en Sciences Cognitives (Univ. Bordeaux) 

Dr. Fabien Lotte – Chargé de Recherche en Informatique (Inria Bordeaux Sud-Ouest) 

Dr. Martin Hachet – Chargé de Recherche en Informatique (Inria Bordeaux Sud-Ouest) 

Pr. Sriram Subramanian – Professeur des Universités en Informatique (Univ. Sussex, UK) 

Cette thèse a été évaluée par le jury suivant : 

Ass. Pr. Reinhold Scherer – Assistant Professeur en Informatique (TU Graz, Autriche) – Rapporteur & 

Président du Jury 

Pr. Andrea Kübler – Professeur en Psychologie (Univ. Würzburg, Allemagne) – Rapporteur 

Pr. Dominique Guehl – Professeur des Unviersités en Neurosciencs, Praticien Hospitalier Neurologue 

(Univ. Bordeaux, France) – Rapporteur 

Dr. Jérémie Mattout – Chargé de Recherche en Neurosciences (INSERM Lyon, France) – Examinateur 

 

Ce Jury, pluridisciplinaire, est justifié par le caractère interdisciplinaire du projet de thèse, alliant 

psychologie (psychologie cognitive, neuropsychologie), neurosciences (électrophysiologie, 

neurosciences cognitives) et informatique (interaction homme-machine, traitement du signal). 



Ce dossier comprend les pièces suivantes : 

▼ Un CV 

▼ Un résumé du projet de thèse 

▼ Une liste des publications (avec indexation dans Medline et DOI pour les articles de revues 

scientifiques) accompagnée de la première page de chaque article publié 

▼ Les 4 articles majeurs publiés dans des revues scientifiques 

▼ Les pré-rapports des 3 rapporteurs 

▼ Le rapport de soutenance signé par les membres du Jury 

▼ L’attestation de réussite au Doctorat 

▼ Deux lettres de recommandation, de mon directeur de thèse Pr. B. N’Kaoua et de mon co-

directeur, F. Lotte 

 

J’espère avoir associé au dossier toutes les pièces qui vous permettront le l’examiner. Je reste à votre 

disposition pour tout renseignement complémentaire.  

 

 

 

Bien cordialement,  

 

 

Camille Jeunet 

 

 



 

Camille JEUNET, PhD 
 

Adresse : 23 rue Bergeon, 33800 Bordeaux, France 

Nationalité : Française 

Date de naissance : 11 Octobre 1990 

Téléphone : (+33) 6 89 11 77 33 

E-mél : camille.jeunet@inria.fr 

Page web : https://camillejeunet.wordpress.com/ 

 

 

FORMATION ▼ 

02-2017 

06-2018 

Post-Doctorat Inria/EPFL – « Utilisation de la réalité virtuelle et des interfaces cerveau-
ordinateur pour améliorer la performance des athlètes de haut niveau » [16 mois] 

Equipe Hybrid (Inria Rennes), M2S (Univ. Rennes), Defitech foundation BMI (EPFL, Suisse) 

07 - 2016 
Visite dans l’équipe GDAC [1 mois] 

UQAM (Université du Québec à Montréal), Canada, avec le Pr. N’Kambou 

11 - 2015 

01 - 2016 

Visite dans l’équipe « Interact Lab » [3 mois] 

Université du Sussex (Brighton), UK, avec le Pr. Subramanian 

07 - 2014 

09 - 2014 

Visite dans l’équipe « Bristol Interaction and Graphics lab » [3 mois] 

Université de Bristol, UK, avec le Pr. Subramanian 

10 - 2013 

12 - 2016 

Doctorat International IdEx en Sciences Cognitives, label européen - «  Improving Mental-
Imagery based Brain-Computer Interface (MI-BCI) User-Training: Towards a New 
Generation of Efficient, Reliable and Accessible BCI » 

Superviseurs: Bernard N'Kaoua1, Fabien Lotte2, Martin Hachet2 & Sriram Subramanian3 
1Université de Bordeaux, France, 2Inria Bordeaux Sud-Ouest, France, 3Université du Sussex, Angleterre 

Jury: Pr. A. Kübler4, Pr. R. Scherer5, Pr. D. Guehl6 & J. Mattout7 
4Univ. Würzburg, Allemagne, 5TU Graz, Autriche, 6Univ. Bordeaux, France, 6Inserm Lyon, France  

06 - 2013 

Master 2 en Sciences Cognitives « Handicap & Nouvelles Technologies » 

Premier semestre effectué à l’UQAM (Montréal) en Master en Informatique (A+, 91%) – Mention Très 
Bien (17,26/20), major de promotion 

Stage : « Estimation du stress et de la relaxation grâce à des marqueurs physiologiques et 
neurophysiologiques » avec Fabien Lotte & Christian Mühl (Equipe Potioc, Inria Bordeaux) 

06 -2012 

Master 1 en Sciences Cognitives « Handicap & Nouvelles Technologies » 

Université de Bordeaux – Mention Très Bien (16/20), major de promotion 

Stage : « Physiologie et physiopathologie du processus de doute » avec Virginie Lambrecq & 
Dominique Guehl (IMN, Univ. Bordeaux) 

Stage Complémentaire : « Machine Learning » avec Marc-Michel Corsini (Univ. Bordeaux) 

06- 2011 

Licence - MASS (Mathématiques Appliquées au Sciences Sociales), spécialité:  Sciences 
Cognitives, 

Université de Bordeaux –Mention Bien (14,4/20), classée 3ème 

07- 2008 
Baccalauréat Scientifique (option sport) 

Lycée Borda (Dax) – Mention Bien (15,9/20) 

mailto:camille.jeunet@orange.fr
https://camillejeunet.wordpress.com/


 

PRIX & BOURSES ▼  

 
 
 

ENSEIGNEMENT & ENCADREMENT ▼ 

 
 

2016 Bourse de post-doc Inria / EPFL (classée 1ère) 

2016 Talent « L’Oreal Unesco pour les Femmes et la Science 2016 » 

2016 Prix du « Meilleur Prof » décerné par les étudiants de Licence 1 MIASHS 

2015 Best Paper Award – Colloque des Jeunes Chercheurs en Sciences Cognitives 

2015 Prix du public & Prix du jury au concours « Ma Thèse en 180s »  

2013 Allocation IdEx Bordeaux (100%) – co-direction internationale 
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2015/2016 – Poste de Moniteur en Sciences Cognitives (64h00 de service eqtd) 

2013/2014 – Poste de Moniteur en Psychologie (64h00 de service eqtd) 

Les enseignements ont été dispensés en Licence Psychologie, en Licence MIASHS 
(Mathématiques et Informatique appliqués aux Sciences Humaines et Sociales) et en Master 
Sciences Cognitives et Ergonomie de l’Université de Bordeaux. 
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CM – J’ai moi-même créé, en autonomie, tous les supports pédagogiques de mes CM, soit : 6h00 de 
CM en Sciences Humaines et Méthodes (L1 MIASHS), 6h00 de CM en Connaissances et 
Représentations (L3 MIASHS) et 6h00 de CM en IHM et FH (M1 Sc. Cognitives et Ergonomie). 

TD –  J’ai aussi créé en autonomie les supports de TD pour les UE suivantes : 9h00 de TD en Sciences 
Humaines et Méthodes, 12h00 de TD d’Introduction aux Sciences Cognitives (que j’ai dispensées en 
français et en anglais), 9h00 de TD de Connaissances et Représentations (L3 MIASHS) et 9h00 de 
TD d’IHM et FH (M1 Sc. Cognitives et Ergonomie). 
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S 2016 – Léa Pillette (3A ENSC-EINSEIRB-MATMECA – 6 mois) ; Encadrant principal (50%), co-
encadrement avec F. Lotte, B. Mansencal et B. N’Kaoua – Design, Implémentation et Evaluation 
d’un compagnon d’apprentissage tangible pour améliorer l’apprentissage des interfaces cerveau-
ordinateur – Ce stage a donné lieu à la soumission d’un article. 

2016 – Suzy Teillet (3A ENSC – 6 mois) ; Encadrant principal (60%), co-encadrement avec F. Lotte 
et B. N’Kaoua –Vers l’utilisation d’interfaces cerveau-ordinateur pour la rééducation post-AVC  - 
Etude de l’impact des habiletés spatiales – Ce stage a donné lieu à un article publié à SMC2016. 

2015 – Emilie Jahanpour (M1 Sciences Cognitives – 2 mois) ; Encadrant principal (80%), co-
encadrement avec F. Lotte – A quel point pouvons-nous apprendre les compétences liées aux ICO 
grâce au feedback actuel ? – Ce stage a donné lieu à un article paru dans J. of Neural Engineering. 

2014 – M. Sueur (M1 Sciences Cognitives – 2 mois) ; Encadrement principal (70%), co-
encadrement avec F. Lotte et B. N’Kaoua – Entraînement utilisateur pour les ICO. 
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2015 – P. Ecoffet, F. Gouet, E. Rhouzlane, M. Seurin (Projet TER L3 MIASHS) ; Encadrement 50%, 
co-encadrement avec F. Lotte - Détecter la frustration grâce à des marqueurs physiologiques et 
neurophysiologiques. 

2015 – I. Ainseba, T. Geral, C. Gouverneur, (TPE 1ère S) ; Encadrement 100% - Interfaces Cerveau-
Ordinateur : La technologie peut-elle compenser les déficiences du corps ? 

2014 – J. Laborie, L. Leitner, M. Pichon, “Interfaces cerveau-ordinateur pour rééducation post-
AVC” (TER L3 MIASHS) ; Encadrement 100% - Interfaces Cerveau-Ordinateur pour la rééducation 
post-AVC. 
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Understanding and Improving Mental-Imagery based Brain-Computer Interface (MI-BCI) User 
Training Protocols: Towards a New Generation of Reliable, Efficient and Accessible BCIs. 

M
O

T
S 

C
L

E
 Interfaces Cerveau-Ordinateur, Apprentissage, Interaction Homme-Machine, Protocoles 

d’Entraînement, Profil Cognitif, Personnalité, Neurophysiologie, ElectroEncéphaloGraphie. 
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Ce projet de thèse est profondément interdisciplinaire puisqu’il nécessite de croiser des 
compétences en informatique, psychologie et neurosciences. Pour cette raison, j’ai été rattachée à 
deux laboratoires de recherche : le laboratoire Handicap, Activité, Cognition, Santé (Univ. 
Bordeaux, situé sur le site du CHU, qui m’a permis d’être en contact avec le milieu hospitalier) et 
l’équipe projet Potioc (Inria Bordeaux Sud-Ouest, où j’ai pu côtoyer des informaticiens et 
roboticiens). Ainsi, j’ai été encadrée par : Fabien Lotte (CR1-HDR Inria BSO), spécialiste des 
Interfaces Cerveau-Ordinateur, Martin Hachet (CR1-HDR Inria BSO) et Sriram Subramanian 
(Professeurs à l’Univ. Sussex, UK), spécialistes de l’Interaction Homme-Machine, et enfin Bernard 
N’Kaoua (Professeur à l’Univ. Bordeaux), Neuropsychologue, spécialiste de l’EEG et de la cognition 
spatiale. Ainsi, mes contributions visent à améliorer les conditions de vie de patients grâce à une 
approche centrée-utilisateur mêlant la psychologie, les neurosciences et l’informatique.  
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-1- Preuve d’une corrélation forte (avec réplication du résultat) entre habiletés spatiales et 
performances de contrôle d’une interface cerveau-ordinateur (ICO) ; design, implémentation et 
validation d’un entraînement aux habiletés spatiales pour améliorer les performances ICO. Grâce 
à cet entraînement cognitif, nous espérons qu’il sera plus facile pour les personnes ayant de 
sévères troubles moteurs d’apprendre à naviguer grâce à un fauteuil roulant contrôlé par une 
interface cerveau-ordinateur. 

-2- Définition d’un modèle prédictif de performance robuste basé sur le profil des utilisateurs 
suggérant notamment que les utilisateurs tendus et peu autonomes avaient des difficultés 
d’apprentissage ; nous avons fait l’hypothèse que cela pourrait être dû au fait que ces utilisateurs 
ont besoin d’un soutien émotionnel et d’une présence sociale lors de l’apprentissage ; ainsi, l’étape 
suivante consistait à proposer le design, implémentation et validation d’un compagnon 
d’apprentissage (personnage tangible dont le comportement s’adapte automatiquement au 
contexte pour fournir aux utilisateurs un soutien émotionnel et une présence sociale). Nous avons 
appelé ce compagnon PEANUT et sommes actuellement en train de tester son efficacité pour 
permettre aux patients d’améliorer leur apprentissage en agissant sur 2 fronts : grâce à un soutien 
émotionnel, primordial pour des patients souvent atteints de troubles de l’anxiété ou de 
dépression, et grâce à un support pour maintenir l’attention des patients durant l’apprentissage. 

-3- Démonstration du fait que le feedback standard utilisé en ICO requiert trop de ressources 
cognitives pour être traité ; design, implémentation et validation d’un feedback tactile (par des 
moteurs vibrotactiles) permettant de réduire la charge cognitive liée au traitement du feedback. 
En effet, en situation de navigation de fauteuil roulant dans un environnement de « la vie de tous 
les jours », le champ visuel est sollicité pour analyser l’environnement. Nous proposons donc un 
feedback tactile (plutôt que visuel) qui permettrait de ne pas surcharger la modalité visuelle. 

-4- Proposition d’une classification des prédicteurs de performance ICO et d’un modèle cognitif 
de la tâche, i.e., d’un modèle computationnel des relations entre ces prédicteurs et de leur impact 
sur les performances.  Ce modèle est le premier de son type dans le domaine des ICO et permettra 
de travailler à l’amélioration de l’apprentissage de l’utilisation des ICO grâce à une approche multi-
factorielle prenant en compte des variables de psychologie de la santé, des capacités cogntives 
mais aussi la motivation par exemple. Le but est d’adapter ce modèle à chaque patient de manière 
à améliorer l’apprentissage, que ce soit en termes de performance ou d’expérience utilisateur. 

Pour de plus amples détails, voici le lien vers mon manuscrit de thèse et ma page professionnelle :                    
https://hal.inria.fr/tel-01417606/document // camillejeunet.wordpress.com  

https://hal.inria.fr/tel-01417606/document%20/%20camillejeunet.wordpress.com


 

 
 

RESPONSABILITES COLLECTIVES & ADMINISTRATIVES ▼ 
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 Lors de ma thèse, j’ai eu l’opportunité de collaborer avec différents chercheurs internationaux :  

. Pr. R. N’Kambou – GDAC (informatique), UQAM, Canada ; Nous avons un papier en commun sur 
l’utilisation d’un système tutoriel intelligent pour les iCO et planifions de débuter en plus une 
collaboration avec Dr. M. Martin – Chirurgien Univ. Sherbrooke, Canada – pour améliorer 
l’entraînement des médecins.   

. Pr. S. Subramanian – et son équipe du BIG Lab, Univ. Bristol, UK (notamment C. T. Vi et D. 
Spelmezan) et du Interact Lab, Univ. Sussex, UK (notamment P. Cornelio). 

. Je coordonne actuellement l’écriture d’un chapitre de livre avec Pr. S. Debener & C. Zich (Univ. 
Oldenburg, Allemagne), S. Kleih (Univ. Würzburg), R. Scherer (TU Graz, Autriche). 
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05-2017- Co-organisation d’un cours (3 session de 80min) sur les ICO à CHI2017, Denver, USA 
(taux acceptation : 40%) – CHI est la plus importante et sélective des conférences en Interaction 
Homme-Machine au monde, avec autour de 3000 participants par an. 

10-2016 - Co-organisation de la “BMI Workshop special session on Human factors for BMI 
training and operation” @ SMC (Systems, Men and Cybernetics) 2016, Budapest, Hongrie.   

05-2016 - Co-organisation du Open-BCI Workshop, événement satellite du 6th International BCI 
Meeting, Asilomar, USA. 

10-2015 - Co-organisation de la “BMI Workshop special session on user-training in EEG-based 
BCIs” @ SMC 2015, Hong Kong.  
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J’ai été (ou vais être) membre de plusieurs comités de programme de conférences 
internationales ; Dans ce cadre,  je sollicite des chercheurs renommés pour qu’ils soumettent 
leurs travaux, puis je participe au recrutement des comités de relecture et à la sélection des 
articles acceptés pour publication et présentation à la conférence.  

09-2017 – Membre du comité de programme de la Graz BCI Conference 2017 (Graz, Autriche) ; 
une des deux conférences sur les ICO (ou BCI en anglais pour Brain-Computer Interface) les plus 
importantes au monde ; elle réunit toute la communauté internationale une fois tous les 2 ans.  

10-2016 – Membre du comité de programme de SMC 2016 (Budapest, Hongrie) 

10-2015 – Membre du comité de programme de SMC 2015 (Hong Kong) 
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J’ai été sollicité pour être relectrice d’une douzaine articles : 

Articles de Revues Scientifique – PLOS ONE, Journal of Visualized Experiments, International 
Journal of Psychophysiology, IEEE Transactions on Human Machine Systems 

Articles de Conférences – CHI 2017, SMC2016, CHI 2016,  SMC 2015. 
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2016 – Participation à la création d’un MOOC sur l’Intégrité Scientifique, tourné par l’Université 
de Bordeaux et destiné dans un premier temps aux doctorants, puis aux chercheurs, ingénieurs, 
etc. ; Mon rôle a été de réfléchir comment rendre le MOOC attractif, ce qui s’est concrétisé en un 
tournage d’un « micro campus » (micro trottoir sur le campus universitaire bordelais) et une 
interview sur des bonnes pratiques. 

2014/2015 – Elue représentante des doctorants au conseil de l’Ecole Doctorale SP2 ; mon rôle 
était de faire l’interfaçage entre les doctorants, le comité des doctorants et le conseil de l’école 
doctorale lors des conseils de l’EDSP2 (1 fois par mois). 

2013 à 2O15 – Membre du comité des doctorants de mon Ecole Doctorale SP2 ; Avec les autres 
membres, nous avons cherché à mettre en place des solutions pour faciliter le contact entre les 
doctorants et l’équipe dirigeante de l’ED. Notamment, nous avons mis à disposition une adresse 
mail et un groupe facebook, nous avons aussi organisé chaque année les journées de l’ED.  

Depuis 2014 – Promotion des carrières de la recherche auprès des lycéens (intervention au 
lycée de Borda, Dax, participation au salon Aquitec, Bordeaux) 
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Depuis 2014 – Membre de l’Association des Doctorants de l’EDSP2 
2014 – Membre fondateur de l’Association des Doctorants de l’EDSP2 ; Avec 4 collègues 
doctorants, nous avons voulu créer une Association dans le but de faire vivre notre jeune école 
doctorale et de rassembler les doctorants issus de disciplines a priori éloignées. Nous avons mis 
en places plusieurs événements, dont le Gala de l’EDSP2, qui depuis a lieu tous les ans. 
Aujourd’hui, l’association comprend une centaine de membres. 
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  2016 – Conférencière invitée à Pint of Science 2016 
2016 – Conférencière invitée pour la 3ème conférence “Media Science” à l’ENSCBP 
2015 – Participation au concours « Ma thèse en 180s »  

2014 – Conférencière invitée au “Café de la Connaissance”  
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 2017 – Interview dans le Complément Sud-Ouest sur l’offre de formation de l’Université de 
Bordeaux  

2016 – Interview dans Plug’In, magasine interne Inria 

2016 – Interview radio : L’œuf ou la Poule sur la radio de l’UQAM (Canada) 



COMPRENDRE & FACILITER L’APPRENTISSAGE DES INTERFACES CERVEAU-
ORDINATEUR BASEES SUR L’IMAGERIE MENTALE :   

VERS UNE GENERATION D’INTERFACES CERVEAU-ORDINATEUR FIABLES, EFFICACES ET ACCESSIBLES  

 

 

Une Interface Cerveau-Ordinateur basée sur l’Imagerie Mentale (IM-ICO), est une 
neurotechnologie permettant à son utilisateur d’interagir avec l’environnement uniquement via son 
activité cérébrale (souvent mesurée par ElectroEncéphaloGraphie – EEG) de par la réalisation de tâches 
d’Imagerie Mentale (IM). Par exemple, avec une IM-ICO, imaginer des mouvements de la main 
gauche/droite peut permettre de déplacer un objet, tel qu’un fauteuil roulant, vers la gauche/droite. Les 
IM-ICO sont réellement prometteuses, notamment dans l’optique de créer des technologies d’assistance 
(par exemple des fauteuils roulants, comme expliqué dans l’exemple précédent, ou des neuroprothèses) 
permettant aux personnes souffrant d’un handicap moteur sévère d’accéder à une certaine autonomie 
[1]. Malgré cela, les IM-ICO demeurent peu utilisées par les patients dans le besoin, entre autres en 
raison de leur manque de fiabilité : 15% à 30% des utilisateurs sont incapables de les contrôler, et parmi 
ceux qui y arrivent, les performances de contrôle restent souvent modestes, ne permettant un pas un 
usage sûr dans des conditions de vie réelle [2]. Il est reconnu qu’un apprentissage approprié est 
essentiel pour acquérir les compétences nécessaires au contrôle d’une IM-ICO. Or, les protocoles 
d’entraînement actuels sont théoriquement inappropriés car ils ne suivent pas les recommandations 
issues de l’ingénierie pédagogique [3]. Malheureusement, la composante « humaine » des IM-ICO n’a été 
que peu considérée pour l’amélioration de la fiabilité de ces technologies : la plupart des recherches du 
domaine se concentrent sur la composante « machine » en essayant d’améliorer les algorithmes 
traduisant l’activité cérébrale en commandes. Or, si les patients n’arrivent pas à produire une activité 
cérébrale claire pour la machine, s’ils n’arrivent pas à apprendre à se servir d’une ICO, les meilleurs 
algorithmes du monde ne suffiront pas à rendre les ICO utilisables. Ainsi, l’objectif principal de ma thèse 
consistait à aborder la problématique de l’amélioration de la fiabilité et de l’accessibilité des ICO avec 
un angle différent : une approche centrée utilisateur.  Ainsi, dans un premier temps,  nous avons cherché 
à comprendre les facteurs impactant la performance de contrôle des utilisateurs, puis dans un second 
temps, nous avons proposé de nouvelles approches pour concevoir des protocoles d’entraînement 
innovants, adaptés au profil de chaque utilisateur. Dans une dernière partie, de synthèse, nous avons 
proposé le premier modèle cognitif de la tâche d’apprentissage ICO. Ce travail pourrait constituer le 
pilier d’une nouvelle génération d’IM-ICO fiables et accessibles. Démocratisées, les IM-ICO pourraient 
jouer un rôle déterminant dans l’amélioration des conditions de vie des patients atteints de sévères 
troubles moteurs et de leur entourage, notamment en offrant une autonomie de mouvement et de 
déplacement.  

 

PREMIERE PARTIE ▼ COMPRENDRE LES FACTEURS IMPACTANT LA PERFORMANCE  

Nous avons pris le parti de traiter cette première question, fondamentale, selon deux axes : 

A. Comment les protocoles d’entraînement impactent-ils les performances aux IM-ICO ? 
B. Comment le profil (cognitif, neurophysiologique, personnalité) impacte-t-il ces performances ? 

A. Il semblait d’abord nécessaire d’évaluer concrètement l’impact des protocoles d’entraînement 
standards sur la capacité des utilisateurs à  contrôler une ICO. En effet, jusqu’alors, cet impact, n’avait 
été que suggéré de par des comparaisons théoriques avec les recommandations issues de l’ingénierie 
pédagogique [3]. Or, les ICO sont sujettes à de nombreux autres éléments qui pourraient expliquer les 
performances modestes des utilisateurs, p.ex., la non-stationnarité et le faible ratio signal/bruit de l’EEG. 
Nous avons donc réalisé une étude [4] au cours de laquelle nous avons utilisé un protocole standard 
dans un contexte exempt d’ICO pour apprendre à des participants à réaliser de simples tâches motrices, 
i.e., dessiner des triangles et des cercles sur une tablette graphique. Comme cela aurait été le cas pour 
des tâches d’imagerie mentale (pour lesquelles il faut déterminer l’amplitude et la vitesse d’imagination 
du mouvement de la main appropriées), ils devaient trouver les stratégies adéquates (taille et vitesse 
d’exécution des gestes) de manière à ce que le système reconnaisse la tâche exécutée. Nos résultats 
montrent que 17% des sujets n’ont pas réussi à apprendre à réaliser ces tâches simples [5]. Plus 
particulièrement, le feedback fourni aux apprenants, trop difficile à traiter, ne semble pas approprié 
pour l’acquisition de compétences. 



B. Il s’agissait donc ensuite de comprendre pourquoi certains utilisateurs réussissent mieux que 
d’autres à apprendre à contrôler une IM-ICO, alors que tous utilisent les mêmes protocoles. Cette grande 
variabilité inter-sujets en terme de performance a soulevé la question du potentiel impact de la 
personnalité, du profil cognitif et des marqueurs neurophysiologiques de l’utilisateur sur ses capacités 
de contrôle d’une ICO. Nous avons réalisé une étude [6] qui a mis en avant deux résultats principaux. 
Premièrement, une forte corrélation entre les performances obtenues par les participants et leurs 
habiletés spatiales (i.e., capacité à produire et manipuler une image mentale) a été révélée. 
Deuxièmement, cette étude a permis d’identifier pour la première fois un modèle prédictif de la 
performance, issu d’une régression linéaire, permettant d’expliquer plus de 80% de la variance des 
performances de nos participants. Ce modèle, qui inclut notamment les niveaux de tension et 
d’autonomie de l’apprenant, s’est non seulement révélé être cohérent avec la littérature, mais aussi très 
stable et fiable. Il suggère que les personnes anxieuses/tendues et peu autonomes sont celles ayant le 
plus de difficultés pour utiliser une ICO, ce qui semble pertinent puisque ce sont les personnes qui ont 
le plus besoin d’une présence sociale et d’un soutien émotionnel, or, aucun soutien de ce type n’est 
proposé pendant l’apprentissage actuellement.  

 

SECONDE PARTIE ▼ PROPOSER DES SOLUTIONS POUR AMELIORER L’APPRENTISSAGE 

Cette seconde partie consistait à proposer de nouvelles approches, basées sur les résultats 
fondamentaux présentés ci-dessus, dans le but d’améliorer l’entraînement au contrôle des IM-ICO. A 
nouveau, nous avons traité cette question selon deux axes : 

A. Améliorer les protocoles d’entraînement standards. 
B. Adapter le protocole d’entraînement en fonction du profil de chaque apprenant. 

A. Nos études ont montré que les protocoles d’entraînement standards n’étaient pas adaptés pour 
acquérir une compétence. Plus spécifiquement, elles ont suggéré que le feedback fourni aux utilisateurs, 
pour les informer de la tâche d’imagerie mentale reconnue par le système, pourrait être trop difficile à 
traiter. En d’autres termes, ce feedback nécessiterait trop de ressources cognitives pour être traité. Nous 
avons donc proposé un feedback intuitif sous forme de stimulations vibrotactiles au niveau des mains : 
vibrations sur la main gauche/droite lors de la reconnaissance par le système de l’imagination d’un 
mouvement de la main gauche/droite, respectivement [8]. En plus d’être intuitif, ce feedback semblait 
être plus adapté qu’un feedback visuel dans un contexte de navigation en fauteuil roulant. En effet, lors 
d’une tâche de navigation, la modalité visuelle est extrêmement sollicitée pour analyser 
l’environnement. Il n’est donc pas recommandé d’ajouter une information, ici le feedback, devant être 
traitée par cette même modalité. Ce feedback tactile s’est avéré être associé à de meilleures 
performances qu’un feedback visuel équivalent : les utilisateurs ont mieux appris à se servir de l’ICO.  

B.1. Premièrement, nos résultats ont suggéré une corrélation entre Habiletés Spatiales (HS) et les 
capacités de contrôle d’une IM-ICO. Nous voulons maintenant savoir si une relation causale existe entre 
ces deux éléments, ou, en d’autres termes : si une amélioration des HS résulterait en une amélioration 
des capacités de contrôle d’une IM-ICO ? Nous menons actuellement une étude [9] afin d’investiguer les 
processus sous-tendant ce lien. Nos premiers résultats montrent, sous certaines conditions, un lien 
entre entraînement HS et progression aux tâches de contrôle d’une ICO ce qui suggère qu’un 
entraînement des HS des patients pourrait les aider à améliorer leurs capacités de contrôle d’une ICO. 
Au-delà de l’application pour les personnes atteints d’un trouble moteur sévère, nous nous intéressons 
aussi à cet entraînement aux HS, notamment en terme de plasticité synaptique au niveau du cortex 
moteur, dans le cadre de la rééducation de patients ayant subi un AVC. En effet, de par son effet sur le 
cortex moteur, un entraînement aux HS représente une approche innovante et prometteuse pour la 
rééducation motrice post-AVC, en particulier pour les patients sans mobilité résiduelle, puisqu’il 
permettrait de stimuler le cortex moteur sans demander aux patients de réaliser des tâche d’IM qui ont 
tendance à leur rappeler la perte de mobilité de leur membre et donc d’accentuer leur état dépressif. 

B.2. Deuxièmement, nous souhaitons aussi adapter le protocole d’entraînement à la personnalité de 
l’apprenant. Plus spécifiquement, nous avons montré que la tension et l’autonomie de l’apprenant 
influençaient sa capacité à utiliser une IM-ICO. Inspirés de la littérature sur l’apprentissage à distance, 
nous avons développé un compagnon d’apprentissage tangible (petite marionnette imprimée en 3D 
dotée d’expressions faciales et de synthèse vocale, que nous avons appelée PEANUT) dont le but est de 
fournir aux apprenants un support émotionnel et une présence sociale visant à pallier de forts niveaux 



d’anxiété et faibles niveaux d’autonomie, respectivement. Le comportement du compagnon est adapté 
au profil de l’apprenant et à l’évolution de ses performances au cours du processus d’apprentissage. Ce 
compagnon a été développé grâce à une approche de design participatif et testé dans le contexte d’un 
apprentissage ICO. Nous pensons que PEANUT est très prometteur pour favoriser l’apprentissage de 
l’utilisation d’ICO pour la navigation, dans le cas de patients avec troubles moteurs, mais aussi lors de 
rééducation post AVC.  En effet, nombre de patients souffrent d’anxiété et de dépression. Ce compagnon 
permettrait de leur fournir un soutien émotionnel qui pourrait faciliter l’apprentissage en favorisant les 
émotions positives et en maintenant le niveau attentionnel et la motivation. 

 

TROISIEME PARTIE ▼ VERS UN MODELE COGNITIF DE LA TACHE D’APPRENTISSAGE DES ICO 

 Cette thèse a permis d’apporter des éléments fondamentaux nouveaux, et donc d’avancer un peu 
plus vers la compréhension des processus impliqués dans l’apprentissage de l’utilisation des ICO. 
Cependant, pour atteindre une réelle compréhension approfondie de ces processus, une approche 
multifactorielle est indispensable. En effet, un apprentissage est le fruit de l’interaction de différents 
facteurs cognitifs intervenant dans un contexte émotionnel et motivationnel particuliers. Il est donc 
nécessaire de comprendre comment ces facteurs interagissent et comment ils peuvent être manipulés 
pour atteindre une meilleure performance. Grâce à une synthèse de la littérature, à la fois sur le plan 
théorique et expérimental, nous avons proposé le premier modèle cognitif de la tâche d’apprentissage 
des BCI. Ce modèle comprend des facteurs liés à la relation entre la personne et la technologie, à 
l’attention/motivation, et aux habiletés spatiales [9]. Nous avons cherché à comprendre comment ces 
facteurs interagissent et comment nous pourrions les influencer grâce à des facteurs extérieurs (tels que 
le design de l’expérience ou des entraînements cognitifs spécifiques) de manière à améliorer la 
performance des utilisateurs.  

 

 

 Ce travail concoure notoirement à l’amélioration de la fiabilité des IM-ICO, et donc à leur 
acceptabilité. Ainsi, ces technologies pourraient contribuer de manière significative à améliorer la 
rééducation post-AVC, et donc les conditions de vie de ces patients et de leur entourage. 
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Abstract

Objective. While promising, electroencephaloraphy based brain–computer interfaces (BCIs)

are barely used due to their lack of reliability: 15% to 30% of users are unable to control a

BCI. Standard training protocols may be partly responsible as they do not satisfy

recommendations from psychology. Our main objective was to determine in practice to what

extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control

performance. Approach. We performed two experiments. The first consisted in evaluating the

efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in

a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training

outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second

experiment was aimed at measuring the correlations between motor tasks and MI-BCI

performance. The ten best and ten worst performers of the first study were recruited for an

MI-BCI experiment during which they had to learn to perform two MI tasks. We also

assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related

to MI-BCI performance in the literature. Main results. Around 17% of the participants were

unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This

suggests that standard training protocols are suboptimal for skill teaching. No correlation was

found between motor tasks and MI-BCI performance. However, spatial ability played an

important role in MI-BCI performance. In addition, once the spatial ability covariable had

been controlled for, using an ANCOVA, it appeared that participants who faced difficulty

during the first experiment improved during the second while the others did not. Significance.

These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill

teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when

faced with difficult pre-training, subjects seemed to explore more strategies and therefore

learn better.

Keywords: brain-computer Interface, user-training, standard training protocol, spatial ability,

electro-encephalography

(Some figures may appear in colour only in the online journal)

1. Introduction

Brain–computer interfaces (BCIs) are communication and

control systems that allow users to interact with the

environment using only their brain activity [47], which is

often measured using electroencephalography (EEG). A

prominent type of BCI, called motor imagery based BCIs

(MI-BCIs), makes use of control signals sent via the

execution of motor imagery tasks, such as imagining hand

movements. They are indeed very promising, in particular
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Abstract
While being very promising for a wide range of applications, mental-imagery-based brain–

computer interfaces (MI-BCIs) remain barely used outside laboratories, notably due to the dif-

ficulties users encounter when attempting to control them. Indeed, 10–30% of users are unable

to control MI-BCIs (so-called BCI illiteracy) while only a small proportion reach acceptable

control abilities. This huge interuser variability has led the community to investigate potential

predictors of performance related to users’ personality and cognitive profile. Based on a lit-

erature review, we propose a classification of these MI-BCI performance predictors into three

categories representing high-level cognitive concepts: (1) users’ relationship with the tech-

nology (including the notions of computer anxiety and sense of agency), (2) attention, and

(3) spatial abilities. We detail these concepts and their neural correlates in order to better

understand their relationship with MI-BCI user-training. Consequently, we propose, by

way of future prospects, some guidelines to improve MI-BCI user-training.

Keywords
Brain–computer interfaces, Interuser variability, User-training, Predictors of performance,

Neural correlates, Sense of agency, Computer anxiety, Attention, Spatial abilities, Improving

training protocols
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Abstract

Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send com-

mands to a computer using their brain-activity alone (typically measured by ElectroEnceph-

aloGraphy—EEG), which is processed while they perform specific mental tasks. While very

promising, MI-BCIs remain barely used outside laboratories because of the difficulty

encountered by users to control them. Indeed, although some users obtain good control

performances after training, a substantial proportion remains unable to reliably control an

MI-BCI. This huge variability in user-performance led the community to look for predictors of

MI-BCI control ability. However, these predictors were only explored for motor-imagery

based BCIs, and mostly for a single training session per subject. In this study, 18 partici-

pants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2

of which were non-motor tasks, across 6 training sessions, on 6 different days. Relation-

ships between the participants’ BCI control performances and their personality, cognitive

profile and neurophysiological markers were explored. While no relevant relationships with

neurophysiological markers were found, strong correlations between MI-BCI performances

and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive

model of MI-BCI performance based on psychometric questionnaire scores was proposed.

A leave-one-subject-out cross validation process revealed the stability and reliability of this

model: it enabled to predict participants’ performance with a mean error of less than 3

points. This study determined how users’ profiles impact their MI-BCI control ability and

thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of

each user.

Introduction

A brain computer interface (BCI) is a hardware and software communication system that

enables humans to interact with their surroundings without the involvement of peripheral
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Workload estimation from electroencephalographic signals (EEG) offers a highly sensitive

tool to adapt the human–computer interaction to the user state. To create systems that

reliably work in the complexity of the real world, a robustness against contextual changes

(e.g., mood), has to be achieved. To study the resilience of state-of-the-art EEG-based

workload classification against stress we devise a novel experimental protocol, in which

we manipulated the affective context (stressful/non-stressful) while the participant solved

a task with two workload levels. We recorded self-ratings, behavior, and physiology from

24 participants to validate the protocol. We test the capability of different, subject-specific

workload classifiers using either frequency-domain, time-domain, or both feature varieties

to generalize across contexts. We show that the classifiers are able to transfer between

affective contexts, though performance suffers independent of the used feature domain.

However, cross-context training is a simple and powerful remedy allowing the extraction

of features in all studied feature varieties that are more resilient to task-unrelated variations

in signal characteristics. Especially for frequency-domain features, across-context training

is leading to a performance comparable to within-context training and testing. We discuss

the significance of the result for neurophysiology-based workload detection in particular

and for the construction of reliable passive brain–computer interfaces in general.

Keywords: workload, stress, brain–computer interface, classification, electroencephalography, passive brain

computer interface

INTRODUCTION

The increasing complexity and autonomy of information sys-

tems rapidly approaches the limits of human capability. To avoid

overload of the users in highly demanding situations, a dynamic

and automatic adaptation of the system to the user state is nec-

essary. Reliable knowledge about the user state, especially his

workload, is a key requirement for a timely and adequate system

adaptation (Erp et al., 2010). Examples are systems support-

ing air traffic control, pilots, as well as medical and emergency

applications.

Conventional means of workload assessment, such as self-

assessment and behavior, are intrusive or limited in their sensitiv-

ity, respectively (Erp et al., 2010). Physiological sensors, assessing

for example the galvanic skin response (GSR) or elecrocardio-

graphic activity (ECG), offer an unobtrusive and continuous

measure that has been found sensitive to workload (Verwey and

Veltman, 1984; Boucsein, 1992). In the last two decades, neuro-

physiological activity became popular as a modality for the mea-

surement of mental states in general and of workload in specific.

So-called “passive brain-computer interfaces” (pBCI, Zander and

Kothe, 2011) are able to measure neuronal activity in terms of

the electrophysiological activity of neuron populations as in the

case of EEG or the oxygination of the cerebral blood flow as for

functional near-infrared spectroscopy (fNIRS). Both approaches

have been found informative regarding the detection of cognitive

load (Brouwer et al., 2012; Solovey et al., 2012), and there is evi-

dence for a partially superior sensitivity of neural measurements

compared to other physiological sensors (Mathan et al., 2007) or

self-report (Peck et al., 2013).

Most experiments on passive BCI use a very controlled

approach, which naturally limits the range of real-world con-

ditions they reflect. While this control is necessary to ensure

the psychophysiological validity of the mental state detection,

their results lack a certain ecological validity, they can not be

generalized to other contexts. This might be one of the most

impeding problems for the creations of passive BCI systems that

work in the real world, since daily life is characterized by the

variability of the conditions we function under. A prominent

example are changes of affect while working, for example work-

ing under the pressure of an impending evaluation vs. work

without pressure. A system that is supposed to work in such

contexts needs to be calibrated and tested in them. Previous

research in the domain of pBCI largely ignored the problem. To

shed light on the interaction of mental state classification and

change of affective context, we devised a protocol that recre-

ates conditions of work, requiring different effort, during relaxed

conditions and under psychosocial stress in a controlled envi-

ronment. To study the resilience of a state-of-the art workload

detection system to changes in affective context, we train subject-

specific classifiers in either stressed or non-stressed context and

test their performance within the same and in the other con-

text.

In summary, the contributions of this paper for the study of

the effect of affective context on workload classification are:
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Abstract—Although Mental Imagery based Brain-Computer
Interfaces (MI-BCIs) seem to be very promising for many
applications, they are still rarely used outside laboratories. This is
partly due to suboptimal training protocols, which provide little
help to users learning how to control the system. Indeed, they do
not take into account recommendations from instructional design.
However, it has been shown that MI-BCI performances are
significantly correlated to certain aspects of the users’ cognitive
profile, such as their Spatial Abilities (SA). Thus, it remains to
be elucidated whether training the SA of BCI users would also
improve their BCI control performance. Therefore, we proposed
and validated an SA training that aimed at being included in
an MI-BCI training protocol. Our pre-studies indeed confirmed
that such a training does increase people’s SA abilities. We then
conducted a pilot study with 3 participants, one with a standard
MI-BCI training protocol, one with the proposed SA training
integrated into a standard MI-BCI training, and another control
integrating another training, here verbal comprehension tasks,
into a standard MI-BCI training. While such a small population
cannot lead to any strong result, our first results show that SA
training can indeed be integrated into MI-BCI training and is
thus worth being further investigated for BCI user training.

Index Terms—Brain-Computer Interfaces, Training, Spatial
Abilities, Mental Rotation

I. INTRODUCTION

Brain-computer interfaces (BCIs) are communication and

control systems enabling users to interact with their envi-

ronment using their brain activity alone [1] which is often

measured using Electroencephalography (EEG). A prominent

type of BCI, called Mental-Imagery based BCI (MI-BCI),

makes use of control signals sent via the execution of mental-

imagery tasks, such as imagining movements of the left hand

vs. right hand. Such technologies are very promising, notably

in the context of stroke rehabilitation [2]. However, MI-BCIs

remain barely used outside laboratories due to their lack of

reliability [1]. Two main factors responsible for this low relia-

bility have been identified. The first, extensively investigated,

concerns brain signal processing with current classification

algorithms being still imperfect [3]. The second concerns the

users themselves: between 15% and 30% cannot control a BCI

at all (so-called “BCI deficiency”), while most of the remaining

80% obtain relatively modest performances [3].

It is now accepted that controlling an MI-BCI requires

the acquisition of specific skills, and particularly the ability

to generate stable and distinct brain activity patterns while

performing the different MI-tasks [4], [5]. Just as with any

skill, appropriate training is required to acquire these skills

[4]. Yet, current standard training protocols, which do not

take into account the recommendations from psychology and

instructional design (such as offering adaptive and progressive

tasks or explanatory, supportive and multimodal feedback), ap-

pear to be theoretically inappropriate, and thus might be partly

responsible for BCI illiteracy and modest user performance [6].

In a previous study, we showed that the user’s profile could

be related to MI-BCI control abilities based on a 6-session

protocol (i.e., over 6 different days) [7]. In this experiment,

the participants (N=18) had to learn to perform 3 MI tasks:

left-hand motor imagery, mental rotation and mental calcu-

lation. The results stressed the correlation between mental

rotation scores (measured using questionnaires, [8]) which

reflect Spatial Abilities (SA), and mean MI-BCI performance

[r=0.696, p≤0.05]. SA are the mental capacities which enable

the construction, transformation and interpretation of mental

images. Based on these results, it seems that users with high

mental rotation scores perform better when using an MI-BCI

than users with low mental rotation scores. Recently, a second

study [9], involving 20 healthy participants training to control

a 2-class MI-BCI (left- and right-hand movement imagina-

tion), revealed a similar correlation between peak MI-BCI

performance and mental rotation scores [r=0.464, p≤0.05],

thus reinforcing the hypothesis of a close relationship between

spatial abilities and MI-BCI control performance.

With a view to improving users’ MI-BCI control abilities,

further investigating this relationship between MI-BCI perfor-

mance and SA seems promising. More specifically, beyond the

correlation, it would be interesting to assess whether a causal

relationship exists between SA and MI-BCI performance. In

other words, does an improvement in SA lead to improved MI-

BCI performance? This raised the idea of a new approach for

MI-BCI training by targeting the improvement of users’ SA.

Therefore, we implemented an SA training (composed of 6

sessions: 1 standard MI-BCI session - 3 sessions of SA training978-1-4799-8697-2/15/$31.00 c©2015 European Union
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Introduction: While Mental Imagery based BCIs (MI-BCIs) are promising for many applications, their usability 

�out-of-the-lab� has been questioned due to their lack of reliability: literature reports that 15% to 30% of users 

cannot control such a technology, while most of the remaining users obtain only modest performances [1]. 

Standard MI-BCI training protocols have been suggested to be partly responsible for these modest performances 

as they do not comply with general human learning principles [2]. The modest performances as well as the flaws 

in the protocols led to the investigation of solutions to improve MI-BCI training by adapting it to each user. Such 

an approach is possible using Intelligent Tutoring Systems (ITS), i.e., computerised systems aiming at supporting 

learning [3]. Hence, we show why ITS are relevant for MI-BCI training and how this technology could be used. 

 

Why? � MI-BCI training resembles distance learning (DL) as it is performed autonomously, with neither teacher 

nor classmates. Consistently with DL literature, highly anxious and poorly autonomous learners have been shown 

to struggle with MI-BCI training [5]. Since ITS have been proven efficient for improving DL [3], MI-BCI 

training may also benefit from ITS. The strength of ITS lies in (1) a personalised support provided by a learning 

companion [3] and (2) an adaptation of the training process according to the learner�s profile and skill evolution. 

 

How? - We are proposing the conceptual framework for an ITS which would support MI-BCI user-training. ITS 

comprise 4 modules. First, the Student Model is the core component containing information about the user�s 

personality and cognitive profile and state. Second, the Expert module contains the concepts, rules and strategies 

of the field to be learned. Third, the Tutoring module uses input from the two previous modules to select a 

tutoring strategy, and finally the Interface provides the user with access to the learning environment. Each 

module will be described in an MI-BCI training context (see Fig.1). The Student Model contains 2 kinds of 

information:  1) the user-profile, as assessed by questionnaires, and more specifically spatial abilities and 

personality traits (e.g., abstractness, tension or autonomy), which have been shown to be related to MI-BCI 

performance [4]; and 2), the user�s cognitive state, e.g., fatigue and workload levels and MI-BCI skill 

development, provided by the BCI system through classification-accuracy measures. The Expert module contains 

a cognitive model of the skills to be learned, e.g., the ability to generate stable and distinct brain-activity patterns 

while performing the MI-tasks. It also includes a bank of exercises with different levels of difficulty [6], which 

would help the user to acquire these skills. Based on the Student Model and on the Expert module, and using 

specialised algorithms [3], the Tutor selects the appropriate exercises and provides the users with a suitable 

support, i.e., adapted to their performance and profile. This support will be provided using a physical learning 

companion [3], which has been proven to increase motivation and learning [3]. In particular, this companion will 

provide any users who have high tension and low autonomy levels [4] with a social presence and an emotional 

support (e.g., empathy). We are currently designing and evaluating the content of these different modules. 

 

 
 

Figure 1. Diagram representing the conceptual architecture of an ITS supporting MI-BCI training. 

Discussion: ITS may be very useful for MI-BCI user training, especially if the Student Model and Expert module 

are reinforced. The former could include more detail on the user�s profile and cognitive state, while the latter 

could be improved by a better fundamental understanding of MI-BCI related skills and how they are acquired.     

 

Significance: Such an ITS represents a promising pluridisciplinary approach for improving MI-BCI performance 

as it would enable to gather different levers and articulate them in order to optimise the user-training process. 
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Introduction: Despite their promising potential impact for many applications, Mental-Imagery based BCIs (MI-

BCIs) remain barely used outside laboratories. One reason is that 15% to 30% of naïve users seem unable to 

control them [1] and only a few reach high control abilities. Although different predictors of BCI performance 

(i.e., command classification accuracy) have been investigated to explain this huge inter-user variability [2, 3], no 

strong predictive model has yet been determined. This could be due to (a) the often small samples used (N=5 or 

6) and (b) the fact that these predictors have been mostly determined based on one-session experiments. Yet there 

is no evidence that performance obtained at the first session is predictive of users� MI-BCI control ability. 

 

Material, Methods and Results: In [4], we investigated the impact of the user�s personality and cognitive profile 

on MI-BCI performance based on a 6-session experiment. Averaging performances over these sessions reduced 

the intra-subject variability (e.g., due to fatigue or external factors), and thus led to a better estimation of 

participants� MI-BCI control ability. Each session comprised 5 runs during which the participants (N=18) had to 

learn to perform 3 MI tasks: left-hand motor imagery, mental rotation and mental calculation. The results stressed 

the impact of mental rotation scores (measured using questionnaires), and which reflect Spatial Abilities (SA), on 

mean MI-BCI performance [r=0.696, p<0.05] (see Fig. 1[A]). SA are the mental capacities which enable the 

construction, transformation and interpretation of mental images. In a more recent study (to be published), we 

trained 20 participants to control a 2-class MI-BCI by performing motor-imagery of their left- and right-hands, 

within 1 session of 5 runs. Results confirmed the role of SA: mental rotation scores were correlated with peak 

MI-BCI performance [r=0.464, p<0.05]. This suggests that SA are a generic predictor of MI-BCI performances. 

 

 
Figure 1. [A] Diagram representing the mean classification accuracy for the different subjects as a function of their 

mental rotation score; [B] One item per exercise included in the Spatial Ability training:the shape on top is the 

target, and the participant must identify the two shapes that are identical to the target among the four below. 

Spatial Ability Training: The strong correlation between SA and MI-BCI performance raised a new research 

question: Is there a causal effect between SA and MI-BCI performance? In other words: Would an improvement 

of users� SA result in an increase of their MI-BCI control abilities? We implemented an SA training protocol (see 

Fig. 1[B]) including different exercise types and difficulties. In the coming weeks, we will test this protocol 

efficiency in terms of MI-BCI performance improvement by comparing it to a standard MI-BCI training 

approach. We will also investigate the neurophysiological correlates of the SA training (notably the implication 

of the motor cortex) to improve the understanding of the relationship between SA and MI-BCI performance. 

 

Perspectives for Stroke Rehabilitation: If a causal link between SA and MI-BCI performance is confirmed, this 

would be a promising way to improve MI-BCI performance and thus MI-BCI-based applications such as stroke 

rehabilitation [5]. Also, current MI-BCI based stroke rehabilitation procedures [5] require the execution of MI 

tasks which can induce (or increase) a depressed state in patients by reminding them of the loss of movement in 

their limb. Since SA training and mental rotation tasks activate the motor cortex [6], they might also be used as a 

more transparent way to indirectly induce synaptic plasticity in the motor cortex during rehabilitation. 

 

Significance: Through SA, we propose a new approach for MI-BCI training that could offer promising 

perspectives for MI-BCI and stroke rehabilitation. We are currently evaluating and validating this approach. 
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Abstract—Mental-Imagery based Brain-Computer Interfaces
(MI-BCIs) allow their users to send commands to a computer
using their brain activity alone (typically measured by ElectroEn-
cephaloGraphy - EEG), which is processed while they perform
specific mental tasks. While very promising MI-BCIs remain
barely used outside laboratories because of the difficulty en-
countered by users to control them. Indeed, although some users
obtain good control performances after training, a substantial
proportion remains unable to reliably control an MI-BCI. This
huge variability in user performance led the community to look
for predictors of MI-BCI control ability. Mainly, neurophysiolog-
ical and psychological predictors of MI-BCI performance have
been proposed. In this paper, a newly-depicted lever to increase
MI-BCI performance is introduced: namely a spatial ability
training. The aims of this paper are to clarify the relationship
between spatial abilities and mental imagery tasks used in MI-
BCI paradigms, and to provide suggestions to include a spatial
ability training in MI-BCI training protocols.

I. INTRODUCTION

A brain computer interface (BCI) is a hardware and soft-
ware communication system that enables its user to interact
with surroundings without the involvement of peripheral nerves
and muscles, i.e., by using control signals generated from
electroencephalographic (EEG) activity [1]. More specifically,
this paper focuses on BCIs for which these control signals are
sent via the execution of mental tasks (e.g., motor imagery):
so-called Mental-Imagery based BCIs (MI-BCIs). MI-BCIs
represent a new, non-muscular channel for relaying users’
intentions to external devices such as computers, assistive
appliances or neural prostheses [2]. Unfortunately, most of
these promising BCI-based technologies cannot yet be offered
on the public market since a notable portion of users (estimated
to be between 15 and 30%) does not seem to be able to
learn to control such a system [3]: this phenomenon is often
called “BCI illiteracy” or “BCI deficiency”. This high “BCI
illiteracy” rate could be due on the one hand to several EEG-
related flaws like non-stationarity, poor signal/noise ratio or
imperfect classification algorithms [3]. On the other hand,
standard training protocols [4] have also been questioned [5]
as they do not follow recommendations from instructional
design and psychology. Nonetheless, although there is a large
proportion of “illiterates”, some users perform excellently [6]
and the EEG-related flaws and unsuitable protocols do not
explain the important variability in performance . From this

observation emerged the idea of a relation between users’ char-
acteristics and their ability to control an MI-BCI, which led the
community to look for predictors of MI-BCI performance (i.e.,
the rate of correctly recognised MI tasks). The training process
to learn to control an MI-BCI being time- and resource-
consuming, being able to predict users’ success (or failure)
could avoid important loss of time and energy for both users
and experimenters. From another perspective, knowing these
predictors could guide the design of new training protocols
that would be adapted to users’ characteristics. In this paper,
a newly-depicted lever to increase MI-BCI performance is
introduced: namely a spatial ability training. This factor seems
to be a very promising predictor of MI-BCI performance as it
appeared to be stable and reliable. The aims of this paper are
to clarify the relationship between spatial abilities and mental
imagery tasks used in MI-BCI paradigms, and to provide
suggestions to include a spatial ability training in MI-BCI
training protocols.

II. PREDICTORS OF MI-BCI PERFORMANCE

A. Neurophysiological Predictors

Recently, evidence was presented that the amplitude of
sensorimotor-rhythms (SMRs) at rest is a good predictor of
subsequent BCI-performance in motor-imagery paradigms [7]:
a correlation (r=0.53) was found between a new neurophysio-
logical predictor based on the µ (about 9-14 Hz) rhythm over
sensorimotor areas and BCI performance (N = 80). Moreover,
Grosse-Wentrup et al. [8] demonstrated that the modulation
of SMRs was positively correlated with the power of frontal
and occipital γ-oscillations, and negatively correlated with
the power of centro-parietal γ-oscillations. Besides, Grosse-
Wentrup and Schölkopf [9] showed that high-frequency γ-
oscillations originating in fronto-parietal networks predicted
variations in performance on a trial-to-trial basis. This finding
was interpreted as empirical support for an influence of at-
tentional networks on BCI performance via the modulation of
SMRs. Furthermore, Ahn et al. [10] found that BCI-illiterate
show higher θ- and lower α-power levels than BCI-literate.
Statistically significant areas were frontal and posterior-parietal
regions for the θ-band and the whole cortex area for the
α-band. A high positive correlation between γ-activity and
motor-imagery performance was also shown in the prefrontal
area [11]. Finally, [12] demonstrated that having higher frontal
θ and lower posterior α prior to performing motor-imagery,
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ABSTRACT
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs)
allow their users to send commands to a computer via their
brain activity, measured while they are performing specific
mental tasks. While very promising (e.g., assistive technolo-
gies for motor-disabled patients) MI-BCI remain barely used
outside laboratories because of the difficulty encountered
by users to control such systems. Indeed, although some
users obtain very good control performance after training, a
substantial proportion remains unable to reliably control an
MI-BCI. This huge variability led the community to look for
predictors of MI-BCI control ability. In this paper, we intro-
duce two predictive models of MI-BCI performance, based
on a dataset of 17 participants who had to learn to con-
trol an MI-BCI by performing 3 MI-tasks: mental rotation,
left-hand motor imagery and mental subtraction, across 6
sessions. These models include aspects of participants’ per-
sonality and cognitive profiles, assessed by questionnaires.
Both models, which explain more than 96% and 80% of MI-
BCI performance variance, allowed us to define user profiles
that could be associated with good BCI performances.

Keywords
Brain-Computer Interfaces, Mental Imagery, Performance
Predictors, Personality, Cognitive Profile

1. INTRODUCTION
A brain computer interface (BCI) is a hardware and soft-
ware communication system that enables its user to inter-
act with the surroundings without the involvement of pe-
ripheral nerves and muscles, i.e., by using control signals
generated from electroencephalographic (EEG) activity [16].

ACM womENcourage’15, 24 - 25 September, Uppsala, Sweden.

More specifically, this paper focuses on BCIs for which these
control signals are sent via the execution of mental tasks:
so-called Mental-Imagery based BCIs (MI-BCIs). MI-BCIs
represent a new, non-muscular channel for relaying users’ in-
tentions to external devices such as computers, speech syn-
thesizers, or neural prostheses [10]. Unfortunately, most of
these promising BCI-based technologies cannot yet be of-
fered on the public market since a notable portion of users
(estimated to be between 15 and 30%) does not seem to
be able to learn to control such a system [1]: this phe-
nomenon is often called “BCI illiteracy” or “BCI deficiency”.
This high “BCI illiteracy” rate could be due to several BCI-
related flaws like EEG non-stationarity, poor signal/noise
ratio or imperfect classification algorithms [1]. Standard
training protocols [13] have also been questioned [8] as they
do not follow recommendations from instructional design.
However, although there is a large proportion of “illiter-
ates”, some users perform excellently [5] and the previous
elements do not explain the important variability in users’
ability to control an MI-BCI. From this observation emerged
the idea of a relation between users’ characteristics and their
ability to control an MI-BCI. It led the community to look
for predictors of MI-BCI control performance. Indeed, the
training process to learn to control an MI-BCI being time-
and resource-consuming, being able to predict users’ success
(or failure) could avoid important loss of time and energy
for both users and experimenters. From another perspec-
tive, knowing these predictors can guide the design of new
training protocols that would be adapted to users’ charac-
teristics. The main contribution of this paper is to propose,
for the first time, a predictive model of MI-BCI performance
generated from the data of 17 participants who were trained
to perform 3 mental tasks (mental rotation, mental subtrac-
tion and left-hand motor imagery) for 6 sessions.

2. RELATED WORK
Mood, motivation [12] and the locus of control score related
to dealing with technology [2], have been shown to be corre-
lated with motor-imagery based BCI performance. Fear of
the BCI system has also been shown to affect performance
[2][11]. In [4], attention span, personality and motivation
play a moderate role for one-session motor-imagery based
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Abstract—Despite their potential for many applications Brain–
Computer Interfaces (BCI) are still rarely used due to their low
reliability and long training. These limitations are partly due
to inappropriate training protocols, which includes the feedback
provided to the user. While feedback should theoretically be
explanatory, motivating and meaningful, current BCI feedback
is usually boring, corrective only and difficult to understand.
In this study, different features of the electroencephalogram
signals were explored to be used as a richer, explanatory BCI
feedback. First, based on offline mental imagery BCI data,
muscular relaxation was notably found to be negatively correlated
to BCI performance. Second, this study reports on an online
BCI evaluation using muscular relaxation as additional feedback.
While this additional feedback did not lead to significant change
in BCI performance, this study showed that multiple feedbacks
can be used without deteriorating performance and provided
interesting insights for explanatory BCI feedback design.

Index Terms—Brain-Computer Interfaces, Training, Feedback

I. INTRODUCTION

Brain-Computer Interfaces (BCI) are systems that enable

their users to control an external device such as a computer

without the need for any muscular movement [1]. Instead

they only rely on a measure of brain signals, e.g., electroen-

cephalography (EEG). BCI systems can be used as assistive

technology to restore communication with patients who have

severe motor disabilities. Despite their potential in this and

many other areas, most BCIs are still not used outside labora-

tory settings due to their low reliability and long training times.

Furthermore, roughly 15–30% of users fail to gain any control

over a BCI [1]. Recently, [2] have identified potential reasons

for these limitations in the usability of BCI systems. They

argue that since BCIs are co–adaptive systems, the two parts

of the system might be sources of bad performance and hence

are possible targets for improvement: the user and the machine.

The user has to learn to produce specific brain patterns by

performing mental tasks while at the same time the machine

has to learn to recognize and classify these brain patterns by

undergoing machine learning.

While there has been a lot of research exploring new signal

processing approaches to improve the machine learning com-

ponent of BCIs, this study will focus on the user’s side. BCI

use can be seen as a skill and requires training [1]. Training is

particularly important in the case of spontaneous BCIs which

rely on the voluntary modulation of certain brain patterns by

the user. An example of such a paradigm is a mental imagery–

based BCI (MI-BCI) where users try to modulate their brain

activity by performing different mental imagery tasks, e.g. the

imagination of movements. BCI user training can be divided

into three parts: the instructions, the task and the feedback.

While all these aspects are potential targets for improvement

[2] this study will focus on the feedback that is provided to

the user. Feedback is essential for learning to operate a BCI

since it is generally not clear to the user from the beginning

what exactly they are required to do in order for the computer

to be able to pick up useful signals. In a classical MI-BCI

the user is asked to perform different mental imagery tasks

such as the imagination of a left or a right hand movement.

On the basis of a calibration period a classifier is trained to

distinguish between the classes by learning the differences in

the recorded brain patterns which underlie the execution of

the tasks. During subsequent runs feedback is given to the

users to inform about their current performance. The classical

feedback that is used in MI-BCIs is shown in form of a moving

bar which corresponds to the strength and direction of the

output of the previously trained classifier [2]. The feedback

thus indicates whether the classifier was able to identify the

correct class and the certainty of the classifier in its decision.

Several aspects of this feedback are not in line with current

opinions on good feedback from educational research [2].

Generally speaking, while feedback should be explanatory

(i.e., explain what was good or bad and why), motivating,

supportive, meaningful, specific, and multimodal [3], currently

used BCI feedback is usually boring, corrective only (i.e., only

indicates whether it was good or bad), not meaningful to people

who are not familiar with the concept of a classifier, and lim-

ited to the visual modality. Thus, there are a lot of possibilities

for improvement some of which have already been explored in

previous studies. While most BCI systems use visual feedback,

several studies explored the auditory and haptic modalities.

Giving haptic feedback either leads to comparable results as

visual feedback [4] or leads to higher performances [5], [6].

Using the auditory modality for feedback does not seem to be

as promising, the performances are either comparable to visual

feedback [7] or lower [8]. Regarding the motivational aspect

of feedback several studies have shown that virtual reality
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Abstract. Motor-Imagery based Brain Computer Interfaces (MI-BCIs) allow

users to interact with computers by imagining limb movements. MI-BCIs are

very promising for a wide range of applications as they offer a new and non-time

locked modality of control. However, most MI-BCIs involve visual feedback to

inform the user about the system’s decisions, which makes them difficult to use

when integrated with visual interactive tasks. This paper presents our design and

evaluation of a tactile feedback glove for MI-BCIs, which provides a continu-

ously updated tactile feedback. We first determined the best parameters for this

tactile feedback and then tested it in a multitasking environment: at the same

time users were performing the MI tasks, they were asked to count distracters.

Our results suggest that, as compared to an equivalent visual feedback, the use

of tactile feedback leads to a higher recognition accuracy of the MI-BCI tasks

and fewer errors in counting distracters.

Keywords: Brain-Computer interaction � Tactile feedback � Multitasking

1 Introduction

Brain-Computer Interfaces (BCIs) are communication and control systems allowing

users to interact with their environment using their brain activity alone [27]. BCIs based

on ElectroEncephaloGraphy (EEG, i.e., recording neurons’ electrical activity on the

scalp) are increasing in popularity due to their advantages of having high temporal

resolution while being non-invasive, portable and inexpensive compared to BCIs based

on other brain sensing techniques (e.g., functional Magnetic Resonance Imaging). In

particular, sensorimotor rhythms (SMRs), i.e., oscillations in brain activity recorded

from cortical somatosensory and motor areas (detectable in the 8–30 Hz frequency
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Abstract—Although EEG-based BCI are very promising for
numerous applications they mostly remain prototypes not used
outside laboratories, due to their low reliability. Poor BCI
performances are partly due to imperfect EEG signal processing
algorithms but also to the user, who may not be able to produce
reliable EEG patterns. This paper presents some of our current
work that aims at addressing the latter, i.e., at guiding users
to learn BCI control mastery. First, this paper discusses some
psychological models about human learning to illustrate the
limitations of current standard BCI training approaches and thus
the need for alternative ones. We will show that such theoretical
limitations are confirmed by actual experiments. To try to address
these limitations, we conducted a study to explore what kind of
users can use a BCI and why, and will present the main results.
We also present new feedback types we designed to help users
to learn BCI control skills more efficiently.

I. INTRODUCTION

ElectroEncephaloGraphy (EEG)-based Brain-Computer In-
terfaces (BCI) make computer control possible without any
physical activity [?]. As such, they have promised to revo-
lutionize many applications areas, including assistive devices
or human-computer interaction [?][?]. Despite this promising
potential, such revolutions have not been delivered yet, and
BCI are still barely used outside laboratories [?]. The main
reason for this failed promise is the substantial lack of relia-
bility of current BCI [?]. In particular, BCI too often fail to
correctly recognize the users mental commands. Moreover, it
is estimated that roughly 20% of BCI users cannot control the
system at all (the so-called BCI illiteracy/deficiency) [?].

To operate a BCI, the user has to produce EEG patterns,
typically using mental imagery tasks1, which the machine has
to recognize by using signal processing. So far, to address
the reliability issue of BCI, most research efforts have been
focused on EEG signal processing only [?][?]. While this
has contributed to increased performances, improvements have
been relatively modest, with BCI accuracy being still relatively
low and BCI illiteracy still high [?][?]. Thus, the reliability
issue of BCI is unlikely to be solved by focusing on signal
processing alone. Indeed, BCI control is known to be a skill
that needs to be learned and mastered by the user [?]. This
means that 1) the BCI performances of a user become better
with practice and thus that 2) the user needs to learn how
to produce stable, clear and distinct brain activity patterns to
successfully control a BCI. With poor users BCI control skills,
even the best signal processing algorithms will fail to recognize

1Note that BCI based on Event Related Potentials are not considered in this
paper as they involve very little or no human training [?]

the users mental commands. Unfortunately, how to train users
to BCI control has been rather scarcely studied in the BCI
literature so far. As a consequence, the best way to train users
to master BCI control skills is still unknown [?][?].

This paper aims at convincing the reader that changing
BCI design to enable their users to master BCI control skills
is a very promising direction to improve BCI reliability.
Indeed, this paper first identifies the theoretical and practical
limitations of current standard BCI training protocols, which
may explain, at least in part, the current high rate of BCI illit-
eracy/deficiency and their overall modest performance. It then
presents our ongoing work towards improving these training
protocols. It notably presents some results about what kind
of users can use mental imagery-based BCI and why. It also
introduces new feedback types and new training environments
targeted at improving the user’s understanding of BCI use as
well as his/her motivation to learn the BCI skill. Overall, this
paper shows that we can improve BCI reliability by improving
how users learn a BCI skill and that much still needs to be
explored in that direction.

II. THEORETICAL AND PRACTICAL LIMITATIONS OF

CURRENT BCI TRAINING APPROACHES

BCI control being a skill, it has to be mastered by the
BCI user [?]. Typically, standard BCI training is perform by
asking the user to control an object on screen by modulating
his/her brain activity in a specific way (e.g., using motor
imagery). The feedback provided to the user about his/her task
performance is thus generally a uni-modal (generally visual)
feedback indicating the mental task recognized by the classifier
together with the confidence in this recognition. It is generally
represented by an extending bar or a moving cursor [?].
Typically, the bar/cursor extends in the required direction if the
mental task is correctly recognized and extends in the opposite
direction otherwise. The user is generally trained following a
synchronous protocol, i.e., the user is required to do specific
tasks (e.g., imagining left hand movements) in specific time
periods only. The same protocol is usually repeated until the
user has learnt the BCI skill, i.e., until he/she has achieved a
given performance, often measured in terms of classification
accuracy.

A. Theoretical limitations

Unfortunately, such standard training approaches satisfy
very few of the guidelines provided by human learning and
instructional design principles to ensure an efficient learning
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Abstract

While being very promising, brain-computer interfaces remain barely used outside labo-
ratories because they are not reliable enough. One study [3] suggested that current training
approaches may be partly responsible for the poor reliability of BCIs as they do not satisfy
recommendations from psychology and are thus inadequate. To determine to which extent
such BCI training approaches (standard -S- and partially self-paced -PSP-) are suitable to
learn a skill, we used them in another context (without a BCI) to train people to perform
simple motor tasks. Results show that 15% of the participants are unable to learn to per-
form these simple motor tasks, which is close from the BCI-illiteracy rate [1]. Moreover,
usability questionnaires suggest that while it is not more pleasant to learn with a PSP
approach, it is easier than with a S approach.

1 Introduction

Brain-computer interfaces (BCIs) are communication systems allowing users to interact with
the environment, using only their brain activity [6]. BCIs, although very promising, remain
barely used outside laboratories because they are not reliable enough [6]. Two main reasons
have been identified. The first one, extensively investigated, concerns brain signal processing,
with current classification algorithms being still imperfect [1]. The second one concerns the
users themselves. Indeed, many users seem unable to acquire good BCI skills (i.e. the capacity
to generate specific and stable brain activity patterns): around 20% cannot control a BCI
at all (the so-called “BCI illiteracy”), while most of the remaining 80% have relatively modest
performances [1]. An appropriate training is needed to acquire these skills, especially for Mental
Imagery-based BCI (MI-BCI). The study [3] suggested that currently used training and feedback
protocols, which do not take into account the recommendations from psychology to optimise
human learning, might be partly responsible for BCI illiteracy and poor user performance.
For instance, it has been shown that, for efficient learning, training protocols have to fit the
user learning style and propose an increasing and adpative difficulty [3]. Yet standard BCI
training protocols are the same for all users [3]. While instructive, these studies only provide
theoretical considerations about training approaches. It is therefore necessary to concretely
assess whether training approaches used in BCI are appropriate to train a skill. Moreover, it is
necessary to perform this evaluation independently of BCI, to rule out possible biases due to
BCI complexity, non-stationarity and poor signal-to-noise ratio. Thus in this work, we propose
to study these BCI training approaches without using a BCI: participants were asked to learn
specific and simple motor tasks using BCI-like training approaches. We then studied whether
and how well they could learn such motor tasks to assess the quality of the training approaches,
independently of BCI use. We studied here two different approaches: 1) the training approach

1
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Abstract: Stress is a major societal issue with negative impacts on health and economy. Physiological computing of-
fers a continuous, direct, and unobtrusive method for stress level assessment and computer-assisted stress
management. However, stress is a complex construct and its physiology can vary depending on its source:
cognitive workload or social evaluation. To study the feasibility of physiology-based load-invariant psychoso-
cial stress-detection, we designed a stress-induction protocol able to independently vary the relevant types of
psychophysiological activity: mental and psychosocial stress. Here, we validate the efficacy of our protocol
to induce psychosocial and mental stress. Our participants (N=24) had to perform a cognitive task associated
with two workload conditions (low/high mental stress), in two contexts (low/high psychosocial stress), during
which we recorded subjects’ self-reports, behaviour, physiology and neurophysiology. Questionnaires showed
that the subjectively perceived level of stress varied with the psychosocial stress induction, while perceived
arousal and mental effort levels vary with mental stress induction. Behaviour and physiology further cor-
roborated the validity of our protocol. Heart rate and skin conductance globally increased after psychosocial
stress induction relative to the non-stressful condition. Moreover, we demonstrated that higher workload tasks
(mental stress) led to decrease in performance and a marked increase of heart rate.

1 INTRODUCTION

Stress is a universal societal issue, affecting both
economy and health. Thus, it is easy to understand
why many people invest in finding ways to deal with
stress (Regehr et al., 2013): how to help people man-
age their stress is becoming a major preoccupation
in many countries. Computer-assisted stress man-
agement is one way to support coping with stress.
However, it requires reliable stress level assessment
(van den Broek and Westerink, 2012).
Besides psychological questionnaires, many de-

vices are available to assess stress levels. They
measure stress-related physiological markers such as
heart rate, skin conductance or blood pressure, which
are increased during a stressful episode (see Section
1.1). The availability of cheap sensor technology and
small, portable computing devices allows to automat-
ically and continuously monitor the level of stress in
every-day contexts, as during driving (Healey and Pi-
card, 2005) and work (Kusserow et al., 2012), or in
clinical contexts (Hogervorst et al., 2013).
However, there are still several challenges that

have to be addressed to be able to successfully mon-
itor stress levels with physiological sensors. One
of the most notorious is the definition of the rela-
tionship between physiological measurements and the
psychophysiological construct of stress. For example,
it is known that modifications of the above physiolog-
ical markers are characteristic of psychosocial stress,
but not exclusively affected by it (Dickerson and Ke-
meny, 2004). For example cardiovascular measures,
like heart rate and its variability, are known to respond
to stress as well as to high cognitive workload or to
exciting situations. The same is true for several fre-
quency bands in the electroencephalogram (EEG): for
example the alpha frequency band has been shown to
covary with stress/relaxation, but is also known to re-
spond strongly to sensory stimulation, attention and
cognitive workload (see Section 1.1). Therefore, the
relationship between measurements and psychophys-
iological constructs is a complex many-to-many map-
ping for which great care has to be taken in the aim of
finding the right mapping parameters to avoid con-
fusion between episodes of psychosocial stress and
those of high cognitive worload, i.e., of mental stress.



Chapitre 11

Apprentissage humain pour les interfaces
cerveau ordinateur

11.1. Introduction

Les BCI sont définies par Wolpaw [WOL 02] comme étant des outils de commu-
nication et de contrôle permettant à un utilisateur d’interagir avec son environnement
uniquement via son activité cérébrale. Cette définition met en avant l’aspect fonda-
mental des BCI, c’est-à-dire, l’interaction entre deux composantes : le cerveau de
l’utilisateur et l’ordinateur. Il s’agit donc de faire en sorte que ces deux composantes
(cerveau et ordinateur) « se comprennent », et s’adaptent l’une à l’autre afin d’op-
timiser les performances du système (souvent mesurées en terme de taux de bonne
classification).

De ce fait, l’architecture du fonctionnement d’une BCI [WOL 02] fait apparaître
une boucle composée de deux grandes étapes, faisant suite à l’envoi d’une commande
par l’utilisateur via son activité cérébrale (que l’on appellera ÉTAPE 0). Au cours de
l’ÉTAPE I, l’ordinateur essayera de comprendre la commande envoyée par l’utilisa-
teur en opérant généralement une extraction de l’information pertinente suivie par une
classification. Puis, lors de l’ÉTAPE II, c’est l’utilisateur qui tentera de comprendre au
mieux la signification du feedback généré par l’ordinateur, qui indique la façon dont
ce dernier a reconnu la commande qui lui a été adressée. Afin d’illustrer le fonctionne-
ment de cette boucle, plaçons-nous dans le cadre d’un protocole BCI standard basé sur
l’imagerie motrice [PFU 01]. Dans ce protocole, l’utilisateur a la possibilité d’effec-
tuer deux tâches d’imagerie motrice, « imaginer un mouvement de la main gauche » ou
« imaginer un mouvement de la main droite », qui sont associées à deux commandes
distinctes. Afin de guider l’utilisateur, le système fournit également un feedback, sou-
vent sous forme de barre, indiquant la tâche reconnue par le système. La direction de

Chapitre rédigé par Camille JEUNET, Fabien LOTTE et Bernard N’KAOUA.
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INTRODUCTION

Le stress est un problème majeur pour l’économie et la
société, nécessitant de concevoir des outils pour le gérer
[3]. En plus de questionnaires psychologiques, il existe
des outils mesurant le niveau de stress grâce à des signaux
physiologiques comme le rythme cardiaque ou la réponse
électrodermale (RED), qui augmentent avec le stress [3].
Ces mesures sont cependant peu robustes car leurs varia-
tions ne sont pas nécessairement dues au stress [3]. C’est
pourquoi il semble pertinent d’estimer le stress à la source,
c’est-à-dire grâce à une analyse temps-réel de l’activité

cérébrale, mesurée par ÉlectroEncéphaloGraphie (EEG).
Dans ce but, la première étape est de créer un protocole
rigoureux pour induire le stress. Ceci permet en effet
d’avoir accès à une vérité terrain ainsi qu’aux signaux
physiologiques (dont EEG) correspondants. Ce poster
présente et valide un tel protocole.

ÉTAT-DE-L’ART

Le stress peut être défini comme une réponse de
l’organisme à une situation environnementale perçue
comme négative, qui peut être réelle ou imaginée [3].
Le stress peut être physique (e.g., dû à des températures
extrêmes), psychologique (e.g., dû à des tâches cognitives
difficiles), ou encore psychosocial (dû à une évaluation
sociale, e.g., parler en public) [3].

Différents travaux ont exploré l’impact du stress sur les
signaux EEG, tels que [4, 6]. Cependant, ils ont unique-
ment étudié des mesures moyennes de l’EEG sur une
large période de temps, ce qui ne permet pas une esti-
mation temps-réel du niveau de stress. Riera et al. se
sont eux intéressés à une mesure du stress en temps-réel
[7]. Ils ont ainsi proposé un protocole mesurant les sig-
naux EEG lors d’une tâche stressante ou lors d’une phase
de repos. Le problème de ce protocole est que de nom-
breux paramètres (notamment comportementaux) varient
entre ces deux conditions, à cause de tâches différentes,
ce qui peut donner lieu à des variations des signaux EEG
indépendemment du niveau de stress. Enfin, dans ces
différents travaux, un seul type de stress est étudié, ce
qui ne permet pas d’identifier une mesure générique du

stress. C’est pourquoi nous avons conçu un protocole dans
lequel 1) le seul paramètre changeant d’une condition à
l’autre est le niveau de stress, et 2) ce niveau de stress varie
selon deux types de stress : psychologique (induit par des
tâches cognitives difficiles impliquant différents niveaux
de charge mentale) et psychosocial (induit par des tâches
de présentation en public, avec évaluation).

MÉTHODE

14 sujets (dont 4 femmes, âge moyen : 26.46 ± 9.75

ans) participèrent à notre expérience. Lors de celle-ci,
différents signaux physiologiques ont été enregistrés, dont
l’EEG, le pouls et la RED. Avant l’expérience, les sujets
devaient remplir le questionnaire “State-Trait Anxiety In-
ventory” (STAI) Y-A, qui mesure le niveau d’anxiété [8].
En effet, le score au questionnaire STAI Y-A augmente
lors d’une situation de stress psychologique. Ensuite, les
capteurs étaient installés, puis l’expérience commençait
dans l’un des quatres scénarios possibles, afin de contre-
balancer les conditions pour éviter tout effet d’ordre (voir
Figure 1). Chaque scénario est composé de deux blocs (un
bloc stress et un bloc non-stress, présentés dans un ordre
aléatoire), séparés par une mesure du questionnaire STAI
Y-A. De même, l’expérience commence aléatoirement par
une tâche de charge mentale basse ou élevée. Dans chaque
bloc, le sujet effectue 6 fois chaque condition de charge
mentale (basse/elevée), avec une courte pause après 6
tâches. Enfin, une fois les 2 blocs complétés, le sujet rem-
plissait une dernière fois le questionnaire STAI Y-A.

Figure 1. Chronologie du protocole expérimental (R=Non-stress
(Relaxation); S=Stress; 0= tâche 0-back; 2= tâche 2-back).

Pour induire du stress psychosocial, notre protocole se
base sur l’approche validée du “Trier Social Stress Task”
[2]. L’induction du stress nécessite la participation d’un
comité de personnes présentées comme des experts du
langage corporel (et jouant ce rôle) et se déroule comme
suit : tout d’abord, un membre du comité demande au su-
jet de préparer un entretien d’embauche fictif pendant 5
minutes. Ensuite, le comité lui demande de faire cet entre-
tien et de parler de lui pendant 5 minutes. Les membres du
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Abstract
Objective. While promising, electroencephaloraphy based brain–computer interfaces (BCIs)
are barely used due to their lack of reliability: 15% to 30% of users are unable to control a
BCI. Standard training protocols may be partly responsible as they do not satisfy
recommendations from psychology. Our main objective was to determine in practice to what
extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control
performance. Approach. We performed two experiments. The first consisted in evaluating the
efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in
a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training
outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second
experiment was aimed at measuring the correlations between motor tasks and MI-BCI
performance. The ten best and ten worst performers of the first study were recruited for an
MI-BCI experiment during which they had to learn to perform two MI tasks. We also
assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related
to MI-BCI performance in the literature. Main results. Around 17% of the participants were
unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This
suggests that standard training protocols are suboptimal for skill teaching. No correlation was
found between motor tasks and MI-BCI performance. However, spatial ability played an
important role in MI-BCI performance. In addition, once the spatial ability covariable had
been controlled for, using an ANCOVA, it appeared that participants who faced difficulty
during the first experiment improved during the second while the others did not. Significance.
These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill
teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when
faced with difficult pre-training, subjects seemed to explore more strategies and therefore
learn better.

Keywords: brain-computer Interface, user-training, standard training protocol, spatial ability,
electro-encephalography

(Some figures may appear in colour only in the online journal)

1. Introduction

Brain–computer interfaces (BCIs) are communication and
control systems that allow users to interact with the
environment using only their brain activity [47], which is

often measured using electroencephalography (EEG). A
prominent type of BCI, called motor imagery based BCIs
(MI-BCIs), makes use of control signals sent via the
execution of motor imagery tasks, such as imagining hand
movements. They are indeed very promising, in particular
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for the rehabilitation of stroke patients [3], for controlling
assistive technologies such as neuroprosthetics or smart
wheelchairs [31], or even for gaming for healthy users [23].
However, MI-BCIs are barely used outside laboratories due
to their lack of reliablility [47]. The two main factors
responsible for this low reliability have been identified. The
first, extensively investigated, concerns brain signal pro-
cessing with current classification algorithms being still
imperfect [2]. The second concerns the users themselves:
between 15% and 30% cannot control a BCI at all (so-called
BCI illiteracy or BCI deficiency), while most of the
remaining 80% display relatively modest performance [2].
It is known that controlling an MI-BCI requires the acqui-
sition of specific skills, and in particular the ability to
generate stable and distinct brain activity patterns while
performing the different MI tasks [36, 46]. Just as with any
skill, appropriate training is required to acquire BCI control
[36]. Yet, current strandard training protocols, which do not
take into account the recommendations from psychology
and instructional design (such as proposing adaptive and
progressive tasks, or explanatory, supportive and multi-
modal feedback), do not seem to be theoretically appro-
priate, and thus might be partly responsible for BCI
illiteracy and modest user performance [27, 28].

However, while being instructive, insights such as those
presented in [27, 28] only provide theoretical considerations
about the flaws associated with the training approaches used
in MI-BCI that could be responsible for modest user perfor-
mance and BCI illiteracy. It is therefore necessary to con-
cretely assess whether the standard training protocols used in
MI-BCI paradigms are appropriate for training in a skill, and
how much they impact BCI performance and BCI skill
acquisition. Moreover, it is necessary to perform this eva-
luation independent of MI-BCIs, to rule out possible biases
due to BCI complexity, EEG non-stationarity and poor signal-
to-noise ratio. Indeed, if BCI training results in poor perfor-
mances (i.e. the subject fails to obtain BCI control), this might
not be due to the training protocol itself but simply to poor
EEG signal processing, noisy or non-stationary signals, or to
the fact that the relevant neural signals cannot be found in the
EEG signals of the user due to the orientation of the user’s
cortex, for instance. Therefore, to study the impact and use-
fulness of a given training protocol, it is necessary to study it
without the possible confounding factors originating from the
BCI design.

Thus, the objective of this paper is to evaluate the effi-
ciency of a standard training protocol [40] for the acquisition
of MI-BCI related skills. In particular, we have focused here
on the MI-BCI training protocol proposed by the Graz group
[40], which is a widely used BCI training protocol [36].
Moreover, most other existing MI-BCI training protocols can
be seen as variants of the Graz training protocol, as they use
similar timings, feedback and training tasks, see, e.g., [4, 32].

In order to acheive this objective, two experiments were
conducted. The first consisted in studying the efficiency of a
standard MI-BCI training protocol [40] for skill acquisition in
an MI-BCI-free context: participants (N = 54) were asked to
learn specific and simple motor tasks, i.e. drawing circles and

triangles on a graphic tablet, using this standard training
approach3 [40]. The second experiment was aimed at study-
ing the correlations between motor task performance and MI-
BCI performance. The ten best and ten worst performers of
the first study were selected to participate in an MI-BCI
experiment during which they had to learn to perform two MI
tasks: left- and right-hand movement imagination. We
hypothesised that poor performers in the first experiment
would also experience difficulties in the MI-BCI experiment,
while the best performers of the first experiment would also
perform well in the second.

In the following sections, we first present the details of
the standard training protocol initially proposed by the Graz
group [40], on which we based our study. Then we present a
quick review of the literature that has been published on
human training in BCI, and more particularly on the impact of
user profile on performance, and on the improvement of
training protocols and feedback. Subsequently, both experi-
ments are introduced and their results presented and
discussed.

2. Description of a standard training approach: the
Graz protocol [40]

This protocol was first proposed by the Graz BCI group as an
alternative to the operand conditioning (OC) approach,
enabling us to provide the participants with a shorter training
period. Indeed, because in the OC approach the user has to
adapt to the system, training can take several weeks. In the
Graz approach however, which is based on machine learning,
the system adapts to the user, thus enabling training time to be
reduced from weeks to few days [41]. The Graz protocol also
has the specificity of being externally paced, since it is based
on stimuli, and of being specific, since EEG is recorded on
specific areas, i.e. most commonly over the sensori-motor
cortex (while for the OC approach, undefined mental pro-
cesses are used for control). Indeed, the most used tasks in the
context of the Graz protocol are motor imagery tasks (such as
the imagination of hand movements), which are known to be
associated with an activation of the motor cortex. The Graz
protocol is divided into two steps: (1) training of the system
and (2) training of the user. During the first step, the user is
instructed to perform several successive motor imagery tasks
such as the imagination of left- and right-hand movements.
From the recorded EEG signals collected during the different
MI tasks, the system extracts characteristic EEG patterns that
are specific to each MI task. These extracted patterns are then
used to train a classifier, the goal of which is to determine the
class to which the EEG signals belong (i.e. imagination of
left- or right-hand movements). For MI-BCI training proto-
cols that last over several sessions (i.e. days), it is common to
regularly retrain the classifier on newly acquired data in order
to take into account cap variations and the condition/state in
which the user is (which can change from one session to

3 Preliminary results (N = 20 participants) of this first study have been
published in a short conference paper [18].
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another). Step 2 consists in training the user. To do so, the
user is instructed to perform the same MI tasks, but this time
feedback (provided by the classifier, which was optimised in
step 1) is provided to inform the user whichMI task the
system has recognised and how confident the system is that
the task it has recognised is the one being performed by the
user. Thus, the goal of the user will be to find strategies such
that the system recognises the mental task he/she is per-
forming. This training protocol is most often performed over
different sessions divided into runs of approximatively 7 min
each. One session typically includes 4 to 6 runs, in order to
avoid the fatigue which is usually felt after more runs. Runs
are themselves divided into trials, usually between 10 to 20
per class (i.e. per MI task). One trial typically lasts 8 s. At the
beginning of each trial, a fixation cross is displayed to
announce the start of the trial and to avoid eye movements
during the following 2 s long rest period (which is usually
used as a reference period for event-related synchronisation
and desynchronisation calculation). Then, after 2 s, a beep is
used to trigger the attention of the user and prepare him/her
for the oncoming instruction. One second later, at t = 3 s, the
instruction appears as an arrow, the direction of which indi-
cates the MI task to be performed, i.e. an arrow pointing left
indicates a left-hand MI and an arrow pointing right a right-
hand MI. From t = 3.250 s, feedback is provided for 4 s in the
shape of a bar, the direction of which indicates the mental task
that has been recognised and the length of which represents
the confidence of the system in the recognition of the MI task.
This sequence of events is depicted in figure 1.

3. Related work: human training in MI-BCI

Research on human training in MI-BCI mainly focuses on
two aspects: (1) the influence of the user’s profile on his/her
MI-BCI control performance and (2) the enhancement of the
communication/comprehension between the user and the
system by improving the training protocols and feedback. A
brief state of the art of these two points of interest is presented
in this section.

3.1. Impact of the user’s profile on BCI performance

The important inter-subject and inter-session variability in
terms of MI-BCI performance led the community to look for
predictors of performance. Two main categories of predictors
have been studied: neurophysiological and psychological
predictors. A review of neurophysiological predictors is pre-
sented in [1]. Among them, a prominent one, whose

usefulness has been reproduced and confirmed across multi-
ple experiments [14, 15], is the predictor proposed by Blan-
kertz et al [5]. They showed that the amplitude of sensori-
motor rhythms (SMRs) at rest was a good predictor of sub-
sequent BCI performance in motor imagery paradigms: a
correlation (r = 0.53) was found between this neurophysio-
logical predictor based on the μ rhythm (about 9–14 Hz) over
sensori-motor areas and MI-BCI performance (N = 80).
Furthermore, concerning psychological factors, mood and
motivation [39], as well as the locus of control score related to
dealing with technology [8], have been shown to be correlated
with MI-BCI performance. Fear of the BCI system has also
been shown to affect performance [8, 38]. The study of
Hammer et al [14] revealed that attention span, personality
and motivation played a moderate role for one session MI-
BCI performance, but a significant predictive model of per-
formance, including visuo-motor coordination and the degree
of concentration, was proposed. They tested this model in a
four session experiment within a neurofeedback paradigm
[15]. Results revealed that these parameters explained almost
20% of the BCI performance within a linear regression, even
if visuo-motor coordination failed significance. Finally, we
recently showed a strong and significant correlation between
users’ spatial ability (assessed using the mental rotation test
[44]) and mental imagery based BCI performance (r = 0.696)
[17, 19]. We also defined a predictive model of MI-BCI
performance (R2

adj = 0.809), which included four parameters:
tension, abstractness ability, self-reliance and the active/
reflective dimension of the learning style [19].

3.2. MI-BCI training protocols

Different training protocols have been proposed in the lit-
erature, most of them being based on the Graz protocol
described here, or similar to it. They focus on improving
either the instructions provided to the user at the beginning of
the experiments, the training tasks proposed to the participant
to control the MI-BCI, the feedback provided concerning the
system’s decision (i.e. about which MI task was recognised)
or the training environment. Only two studies considered the
instructions and showed that it is beneficial to incite the users
to perform kinaesthetic-motor imagery [37] and to not give
them over-specific strategies so that their cognitive resources
are not overtaxed [22]. Concerning the training tasks, several
studies have proposed using either progressive or adaptive
tasks, instead of fixed and repetitive tasks, to increase per-
formance [11, 35, 45]. The feedback certainly is the aspect of
training protocols for which the most alternatives have been
tested. Indeed, the bar representing the classifier output has
been replaced by smileys [25] to increase motivation, or by
auditory [13, 16, 30, 39] or tactile [9, 10, 20, 21, 24] feedback
in order to reduce cognitive workload related to the overtaxed
visual channel. While auditory feedback seems to be the best
solution for locked-in patients, tactile feedback appeared to be
at least as efficient as visual feedback, and more efficient in
interactive contexts [20]. Finally, concerning the training
environment, some authors have proposed to ’gamify’ the
training process to increase motivation and improve user

Figure 1. Timing of one trial in the Graz protocol.
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experience [30], and some have even integrated virtual reality
(for a review, see [23, 26]), which appeared to efficiently
improve performance.

It should be noted that the vast majority of the research
on training protocols aims at improving the Graz training
protocol or similar protocols. Similarly, a large proportion of
the work performed to determine predictors of mental ima-
gery based performance are based on experiments in which
either the Graz protocol, or protocols that can be seen as
variants of it, were used. Yet, the efficiency of this type of
training approach has not been questioned nor extensively
evaluated. Thus, before improving these protocols, it would
be worth testing their efficiency in terms of skill acquisition.
This is what we aimed to do with the two experiments we
present in the next sections.

4. Experiment 1: using a standard MI-BCI training
protocol for learning to perform simple motor tasks

The objective of this first study was to evaluate the impact of
a standard training approach (the Graz protocol, introduced
above [40]) on participants’ ability to acquire a skill in an MI-
BCI-free context.

4.1. Materials and method

Participants were asked to learn to perform two motor tasks:
drawing triangles and circles with a pen on a graphic tablet
(see figure 2), using the Graz protocol [40] (i.e. same
instructions, tasks and feedback). As would have been the
case in an MI-BCI training context, in which users have to
learn a suitable movement imagination strategy, the partici-
pants here had to learn the strategy that allowed the system to
correctly recognise their drawing, e.g. they had to identify the
suitable shape size, angles and speed of drawing. The parti-
cipants were divided into two groups: one used a standard
training approach [40] while the other one used a partially
self-paced BCI training approach, which provides the user

with more autonomy. Indeed, with the standard approach, no
autonomy is given to the user, who always has to perform the
tasks required by the protocol. Yet, autonomy is known to
increase motivation and learning efficiency in general [28].
Interestingly enough, the study described in [35] obtained
promising results when providing more autonomy to a single
BCI user. These two approaches are described here after.

4.1.1. Participants. 54 BCI-naive and healthy participants
(20 females, 34 males; aged 25.1± 4.6 years old) took part in
this study, which was conducted in accordance with the
relevant guidelines for ethical research according to the
Declaration of Helsinki. All the participants signed an
informed consent form at the beginning of the experiment.

4.1.2. Experimental protocol. Each participant (N = 54) had
to learn to do two motor tasks, namely to draw circles and
triangles on a graphic tablet so that they were recognised by
the system. The training session was divided into runs which
were either standard (s) or self-paced (sp). S-runs were
composed of 20 trials per task. At the beginning of each trial a
green cross was displayed. After 2 s, an auditory cue (a beep)
triggered the attention of the participant towards the red
arrow, which was displayed at 3 s for 1 s, and indicated which
task the participant had to perform, i.e. draw triangles or
circles continuously upon appearance of a right or left arrow,
respectively. The mapping between the task (drawing circles
or triangles) and the instructions/feedback (arrow/bar
extending to the left or right) being incongruent, we helped
the participants to remember it by providing them with a
picture representing the cross of the Graz protocol with a
circle on its left and a triangle on its right. This picture was
visible at all times to ensure subjects could refer to it
whenever needed. At 4.25 s, a blue feedback bar appeared and
was updated at 16 Hz for 3.75 s. Its direction indicated the
shape recognised by the classifier (left: circle, right: triangle)
and its length was proportional to the classifier output. During
sp-runs, no instructions were given: the participants were
asked to do the motor tasks in an autonomous way, i.e. they
could do the task they wanted to, whenever they wanted to.

All participants were provided with the following
instruction: ‘Your goal is to find the right strategy so that
the system recognises as well as possible the shape you are
drawing, which will concretely correspond to having the
feedback bar as long as possible in the correct direction: left
for circles and right for triangles.’

Half the participants (N = 27) were asked to learn using a
standard (S) training approach: they completed four 7 min
long s-runs. The other half learned using the partially self-
paced (PSP) training approach: the first and fourth runs were
s-runs, while the second run was replaced by a 3.5 min long
sp-run followed by a shortened s-run (ten trials per task, 3.5
min), and the third run was replaced by a shortened s-run
followed by a 3.5 min long sp-run. The total training duration
was the same in both conditions. We studied the impact of the
condition, S versus PSP, on the recognition accuracy of

Figure 2. Picture of a participant during the experiment. The
instruction (red arrow pointing right) indicates that the participant
has to draw triangles on the graphic tablet.
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triangles and circles by the system and on subjective
experience (measured by a usability questionnaire, UQ).

4.1.3. Signal processing. In order to discriminate triangular
from circular pen movements on the graphic tablet, we used a
pattern recognition approach as in BCIs. To this end, the 2D
position of the pen on the tablet was acquired at a sampling
frequency of 16 Hz. From the 1s long time window (in a
sliding window scheme, with a 1/16 s step between
consecutive time windows, with overlap) of the 2D pen
position, a histogram of angles was computed. More
precisely, the angles between each consecutive segment of
the time window were first computed, then the number of
angles falling in the ranges 0–30o, 30–75o, 75–105o,
105–150o and 150–180o were counted, and these five count
values were used as input features for a linear discriminant
analysis (LDA) classifier. The (subject-independent) LDA
classifier was trained on 60 trials from each movement, from
two people (one left-handed, one right-handed). The resulting
classifier could discriminate triangles from circles with 73.8%
classification accuracy (ten-fold cross-validation on the
training set), which is an accuracy equivalent to the average
accuracy of an MI-BCI [5]. The output of the LDA was
mapped to the direction and length of the feedback bar, as in a
typical MI-BCI.

Classically, subject-specific classifiers are used in BCI
experiments. Nonetheless, here, the task being extremely
simple, such a classifier would most likely have been perfect,
i.e. with 100% classification accuracy, which is not the case in
BCI experiments. We thus used a subject-independent
classifier which enabled us to have a classification accuracy
similar to that obtained for BCI. Furthermore, a subject-
specific classifier would have added another bias to the
training protocol evaluation as the obtained accuracy would
also have depended on how well the two gestures were
performed during the calibration run, and not only on the
training protocol (instructions, tasks and feedback). Again,
here we wished to isolate the training protocol in order to
study it, hence the use of a subject-independent classifier (i.e.
the same classifier for all), in order to obtain results that were
independent of the classifier.

4.1.4. Analyses. To study how well subjects could learn the
motor tasks, we measure their performance as the average
classification accuracy obtained to discriminate triangular
from circular pen movements, averaged over the whole
feedback period, i.e. from t = 4.25 s to t = 8 s after the start of
the trial. In order to analyse the interaction between the
condition (two modalities: S and PSP; independent measures)
and the performance obtained at each run (four modalities:
run1, run2, run3 and run4; repeated measures), we performed
a two-way ANOVA for repeated measures. Moreover, we
asked the participants to complete a UQ which measured four
dimensions: learnability/memorability (LM), efficiency/
effectiveness (EE), safety and satisfaction. Thus, we did
four one-way ANOVAs, each of them aimed at analysing the
impact of the condition on one evaluated dimension (four

modalities: LM, EE, safety and satisfaction; repeated
measures).

4.2. Results

4.2.1. Performance analyses. Results (depicted in figure 3)
showed that 45 out of 54 participants managed to learn the
task, i.e. obtained more than 70% average performance4,
classification accuracy, [34] (X̄ = 89.09%; SD = 6.35;
range = [72.84, 98.26]) while 9 did not manage
(X̄ = 55.68%; SD = 6.35; range = [50.23, 65.64]). This
rate of 16.67% of people who did not manage to learn is of
the same order of magnitude as the BCI illiteracy rate
(between 15% and 30% [2]). Thus, one can hypothesise that
BCI illiteracy is not only due to the user, but also partly to the
training protocol. Indeed, it has been hypothesised that BCI
illiteracy/deficiency could be due to the user, who may
generate noisy or non-stationary signals, who may have a
cortex whose orientation prevents the relevant neural signals
from reaching the scalp and thus EEG sensors, or who may
fail to produce the desired EEG patterns [2]. Our experiment
suggests that some subjects may fail to reach BCI control
because the training protocol is not suited to everyone.

Furthermore, we performed a two-way ANOVA for
repeated measures to evaluate the impact of the condition on
motor performance according to the run number. Checking
the assumptions revealed that the normality (skewness test:
srun1 = −0.203; srun2 = −1.295; srun3 = −1.709;
srun4 = −1.961) and equality of variance (Levene test:
prun1 = 0.044; prun2 = 0.024; prun3 = 0.160;
psatisfaction = 0.128) were not totally respected. Nonetheless,
given that the results were close to the threshold and the
ANOVA being a robust analysis [43] , we decided to use this
analysis. The two-way ANOVA revealed neither a main
effect of the condition (F(1,52) = 1.997; p = 0.164) nor a
condition–run interaction (F(3,212) = 1.301; p = 0.259).
However, it revealed a main effect of the run (F
(3,50) = 46.178; p � 0.001). Post hoc analyses, student
t-test for paired samples, showed a significant increase in
performance between run1 and run2 (perfrun1 = 72.88%,
perfrun2 = 84.48%; p � 0.001) and between run2 and run3
(perfrun2 = 84.48%, perfrun3 = 87.62%; p � 0.005] but not
between run3 and run4 (perfrun3= 87.62%, perfrun4= 89.11%;
p = 0.277].

4.2.2. Usability questionnaires. Each participant was asked
to complete a UQ at the end of the experiment. This
questionnaire measured four dimensions: LM, EE, safety and
satisfaction. Four one-way ANOVAs were performed to
evaluate the impact of the condition (S versus PSP) on these
dimensions. The prerequisites of the ANOVA were satisfied:
all the dimensions had a normal distribution (skewness test,
sLM = −0.072; sEE = 0.046; ssafety = 0.098;
ssatisfaction = 0.232) and the variances were equal (Levene

4 This 70% accuracy is a threshold often used in the BCI community to
distinguish subjects that achieved BCI control from those who did not
achieve such a control [2].
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test, pLM = 0.938; pEE = 0.415; psafety = 0.861;
psatisfaction = 0.143). However, the results revealed no effect
of the condition: LM (F(1,53) = 2.257; p = 0.139), EE (F
(1,53) = 0.089; p = 0.766), safety (F(1,53) = 0.166;
p = 0.686) and satisfaction (F(1,53) = 0.895; p = 0.349).

4.3. Discussion

The aim of this first study was to concretely assess whether
training approaches used in BCI are appropriate to train a skill
in general. Half the participants were asked to learn to per-
form simple motor tasks using a standard (S) training
approach while the other half used a partially self-paced (PSP)
one, in order to increase the feeling of autonomy. Results
showed no differences between the conditions (S versus PSP)
in terms of performance or in terms of usability. This might
be explained by the fact that most participants of the PSP
group had found the right strategy, and thus had good per-
formance, before the first sp-run. It might be that sp-runs
could be useful for participants who still needed to explore
strategies to find the right one. But once the right strategy
found, sp-runs might not bring any further help to the par-
ticpants. In future experiments, it could be worth modifying
the protocol so that the sp-runs come earlier in the training.

A very relevant result is the fact that while a learning
effect was noted for the whole group on average over the four
runs, around 17% of the participants (9 out of 54) seemed
unable to learn to perform the motor tasks (their performances
were below 70% on average over the four runs). It is note-
worthy that this rate is of the same order of magnitude as the
BCI illiteracy rate (between 15% and 30% [2]). Thus, it seems
most likely that a substantial proportion of illiterates are
illiterate partly due to the training protocols, given the fact
that all subjects were cognitively able to understand the

instructions and had the motor ability to perform the tasks.
This result emphasises the fact that such protocols should be
improved to enable efficient BCI training. In particular,
numerous subjects reported verbally that the feedback was too
poor as it did not indicate what they should do or change in
order to succeed. It has to be noted that the poor performances
of the participants might also be due to the difficulty of
processing the mapping between the tasks and the protocol,
i.e. drawing circles and triangles upon the appearance of a
left- or right-facing arrow, respectively. Indeed, the incon-
gruence of this mapping could have led to a high workload
and a low feeling of agency. In order to avoid such an effect,
participants were provided with a picture representing this
mapping, which was available during the entirety of the
experiment. Moreover, none of the participants reported dif-
ficulties in processing the mapping.

These results lead to two questions needing further
investigations: (1) is the ability to learn using this kind of
protocol correlated to some aspects of the user’s personality,
neurophysiological or cognitive profiles?, and (2) are the
performances obtained at these simple motor tasks predictive
of MI-BCI performance?

Some aspects of these questions are investigated in the
second study introduced here after.

5. Experiement 2: investigating the relationship
between motor performance and MI-BCI
performance

This second experiment was aimed at investigating the rela-
tionship between the ability to learn to perform simple motor
tasks (as done in the first experiment) and the ability to learn
to control an MI-BCI using a standard training approach: the

Figure 3. Graphic representing the performance of the participants (mean classification accuracy) as a function of the run. We chose to
represent the ten best and ten worst performers, who took part in the next experiment. The average performance of the 34 other participants is
represented by the large grey line.
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Graz protocol [40]. Indeed, we hypothesised that there could
be a positive correlation between the performance obtained at
the motor tasks (introduced in experiment 1) and MI-BCI
performance. Indeed, we hypothesised that subjects who
could learn motor tasks using the Graz training protocol
would be likely to learn MI tasks using the same protocol as
they managed to learn a skill using this approach. We also
hypothesised that some aspects of the participants’ profile
would impact their MI-BCI performance. We focused on the
two predictors which seemed to be the most reliable and
adapted to our experiment context according to the literature,
namely spatial ability and the Blankertz SMR predictor. We
thus selected the ten best and the ten worst performers from
the first experiment, based on the averaged classification
accuracy they obtained, and asked them to take part in an MI-
BCI experiment during which they had to learn to perform
motor imagery tasks, i.e. imagination of left- and right-hand
movements.

5.1. Materials and method

5.1.1. Participants. 20 BCI-naive participants (10 females;
aged 24.7± 4.0 years old) took part in this second study,
which was also conducted in accordance with the relevant
guidelines for ethical research according to the Declaration of
Helsinki. Participants were selected from the first experiment
and divided into two groups, the good and the bad
performers. The ten best performers of the first experiment
X( ¯ = 96.00% of performance–classification accuracy;
SD = 1.13) were in the good group while the ten worst
performers of the first experiment X( ¯ = 63.12% of
performance–classification accuracy; SD = 11.54) were in
the bad group. These two groups happened to be composed of
five women and five men each. Moreover, in each group,
seven participants were using the S conditions and three were
under the PSP conditions during the first study. Considering
the results of the first experiment as well as the distribution of
the conditions in the groups, we decided not to consider this
variable (S versus PSP) in this second experiment. In other
words, the MI-BCI training only comprised standard runs.

5.1.2. Experimental protocol. Each participant (N = 20) had
to learn to do 2 MI tasks, namely imagining left- and right-
hand movements, so that they were recognised by the system.
Participants first had to complete a ‘calibration’ run which
aimed at providing the system with examples of EEG patterns
associated with each of the MI tasks. This run and the whole
classifier training process are explained here after (see
section 5.1.5). Then, as in the first experiment, user training
lasted 4 runs, each of them being composed of 20 trials per
task. As shown in figure 1, at the beginning of each trial a
green cross was displayed. After 2 s, an auditory cue (a beep)
triggered the attention of the participant towards the red
arrow, which was displayed at t = 3 s for 1 s, and indicated
which task the participant had to perform (imagining right- or
left-hand movements upon appearance of a right or left arrow,
respectively). At 4.25 s, a blue feedback bar appeared and was
updated at 16 Hz for 3.75 s. Its direction indicated the

imagined movement recognised by the classifier and its
length was proportional to the classifier output. This was thus
exactly the same training protocol as used in the first
experiment.

Here as well, all participants were provided with the
following instruction: ‘Your goal is to find the right strategy
so that the system recognises as well as possible the motor
task you are doing, which will concretely correspond to
having the feedback bar as long as possible in the correct
direction: left for left-hand and right for right-hand
movements’.

Added to these MI tasks, participants were asked to
complete a mental rotation questionnaire which is depicted in
the next section.

5.1.3. Spatial ability assessment using the mental rotation
test. Participants were asked to complete the mental rotation
test [44], which is a validated paper and pen psychometric
questionnaire assessing spatial ability, at the beginning of the
experiment. Spatial ability has been related to mental imagery
based BCI performance [17, 19], but not yet to purely motor
imagery based BCI. This test is composed of two sets of ten
items. Each set has to be completed in 3 min maximum. An
item consists in a 3D shape on the left and four 3D shapes on
the right of the page. Among the four 3D shapes, two are the
same as the one presented on the left with a rotation of 60o,
120o or 180o around the vertical axis (see figure 4). The other
two are mirror-reversed and rotated images of the 3D shape
on the left. For each item, the participant has to find the two
3D shapes that are the same than the one on the left (i.e. only
rotated). Since there is a strong gender effect associated with
this test (men usually perform better than women), we had to
take the participants’ gender into account in the analyses in
order to study the impact of spatial ability on performance.

5.1.4. The Blankertz SMR predictor of MI-BCI performance.
The Blankertz SMR predictor [6] is currently one of the most
replicated and reliable neurophysiological predictors of MI-
BCI performance (correlation of r = 0.53 with SMR
performance over a large dataset, N = 80). It is computed
from a 2 min baseline in a ‘rest with eyes open’ state using
two Laplacians over the motor cortex, i.e. C3 and C4. This
predictor allows us to quantify the potential for
desynchronisation of the SMRs at rest, which can be used
as an indicator of SMR strength during the performance of
motor imagery tasks. As no 2 min long baseline had been
recorded with our protocol, we used the 40 3 s long pre-trial
time windows (3000 ms before the instruction) of each run,
which gave a 2 min long time window and enabled us to
compute the predictor on this sequence. More precisely, we
computed the power spectrum of each 3 s long time window,
averaged these spectrums (i.e. over time windows), and
computed the predictor on this averaged spectrum.

5.1.5. EEG recordings and signal processing. The EEG
signals were recorded using two g.USBamp amplifiers (g.tec,
Graz, Austria), using 30 scalp electrodes (F3, Fz, F4, FT7,
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FC5, FC3, FCz, FC4, FC6, FT8, C5, C3, C1, Cz, C2, C4, C6,
CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO7, PO8, 10–20
system) [12], referenced to the left ear and grounded to AFz.
Such electrodes cover the sensori-motor cortex, where EEG
variations due to MI can be measured. EEG signals were
sampled at 256Hz. First, EEG signals were band-pass filtered
in 8–30 Hz (containing the SMRs) [40]. The first run (20 trials
per MI task) was used to train the classifier. While 20 trials
per class is not much, it has been shown to be sufficient to set
up a motor imagery classifier [7, 29]. For instance, in [12], a
successful mental imagery BCI classifier was setup with only
10 trials per class. Moreover, here we do not focus on the
impact of the classifier but on the impact of the training
protocol. Thus, at the end of the first run, which served for
training the classifier, a common spatial pattern algorithm
[33] was used for each user on the collected data, to find six
spatial filters whose resulting EEG power was maximally
different between the two MI tasks. The spatially filtered EEG
signal power (computed on a 1s time window, with 250 ms
overlap between consecutive windows) was used to train an
LDA classifier [33]. The LDA was then used online to
differentiate between left- and right-hand MI during the five
user training runs.

5.1.6. Analyses. In this study, we analysed the effect of the
group of the first experiment (two modalities: good versus
bad; independent measures), of the run (four modalities: run1,
run2, run3 and run4; repeated measures), of the mental
rotation score (continuous covariable) and of the gender (two
modalities: men versus women; independent measures) on
participants’ MI-BCI performance, that is to say their
classification accuracy. We considered their gender because
of the important gender effect associated with the mental
rotation test. Thus, we performed an ANCOVA with the
mental rotation scores as the covariable and the group, the run
and the gender as independent variables. We also studied the
correlations between participants’ MI-BCI performance and
the Blankertz SMR predictor.

5.2. Results

5.2.1. MI-BCI performance. In our analysis aiming at
evaluating the effect of the group (bad versus good
performers in the first experiment), gender (men versus
women) and run (run1, run2, run3, run4) on users’ MI-BCI
performance once the effect of the mental rotation had been
controlled for, we considered two different measures of MI-
BCI performance: (1) the peak classification accuracy
(measured at the time window of the feedback period for

which the classification accuracy over all trials is maximal),
which is the typical performance measure used with the Graz
protocol, see, e.g., [42], and (2) the mean classification
accuracy over the whole feedback period of all trials. We thus
performed two ANCOVAs. Note that as the mean accuracy is
the averaged accuracy over the whole feedback period, it is
bound to be substantially lower than the usually reported peak
accuracy, identified for the best time window. The mean
accuracy is therefore a rather pessimistic performance
estimate. We nonetheless believe it is useful as it reflects
the participant’s ability to produce a long and stable BCI
control signal.

5.2.1.1. Peak performance . The average peak performance
of the 20 participants was 66.95% (SD = 6.24;
range = [57.09; 82.69]). Assumption checking is depicted
in figure 5. It shows that the criteria for a normal distribution
was satisfied for the mental rotation scores, for the peak
performance of run1 and run4 but not for run2 and run3
(which was anecdotal, especially given the low number of
subjects per group, and thus should not impact the analysis
reliability [43]). The homogeneity of the regression slopes
and the equality of variance criteria were satisfied. However,
it has to be noted that the linearity criteria was not, which
could also be explained by the important inter-run variability
due to the small sample size. Indeed, when considering the
mean performance over the four runs, a linear relation with
mental rotation scores is revealed. The ANCOVA with the
peak MI-BCI performance as the dependent variable revealed
a main effect of mental rotation scores (F(1,15) = 6.991; p �
0.05; h2 = 0.318) as well as a strong tendency towards a main
effect of the run (F(1,15) = 3.638; p = 0.076; h2 = 0.195).
However, neither a main effect of the group (F
(1,15) = 0.388; p = 0.789; h2 = 0.050) nor a main effect
of the gender (F(1,15) = 0.719; p = 0.410; h2 = 0.046) were
revealed. Post hoc analyses (student t-tests for paired
measures) on the tendency towards a run main effect
revealed a significant increase in peak performance, on
average, between the first and the last runs (t = −2.360; p �
0.05) thus suggesting a learning effect. The ANCOVA also
revealed significant interactions. First, a run–mental rotation
scores interaction (F(1,15) = 6.269; p � 0.05; h2 = 0.295)
suggesting an impact of mental rotation on the ability to
improve in terms of performance accross the runs. Second, a
run–gender interaction (F(1,15) = 7.936; p � 0.05;
h2 = 0.346) (see figure 6), which suggests that if we
consider performance independently from participants’ spatial
ability, while men’(s)MI-BCI performance was stable accross
the four runs, women’s increased significantly. Furthermore,
the run–group interaction (F(1,15) = 4.907; p � 0.05;
h2 = 0.246) revealed that, again if we consider performance
independently from participants’ spatial ability, participants
from the good group performed better than those of the bad
group in the first run, but then they did not improve while
participants from the bad group improved in terms of
performance (see figure 7). Finally, this ANCOVA revealed
a strong tendency towards a run–gender–group interaction (F
(1,15) = 4.221; p = 0.058; h2 = 0.220) (see figure 8) but no

Figure 4. First item of the Vandenberg and Kuse mental rotation
test [44].
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gender–group interaction (F(1,15) = 2.982;
p = 0.105; h2 = 0.166).

5.2.1.1. Mean performance . The 20 participants obtained an
average mean classification accuracy of 54.89% (SD = 6.56;
range = [46.41; 68.12]). As expected, this measure leads to

much lower and pessimistic performance estimates. The
analysis of the assumption satisfaction for the ANCOVA are
represented in figure 9. Mental rotation scores as well as mean
performance of run1, run2 and run4 satisfied the criteria for a
normal distribution, but run3 did not. As stated in the
previous paragraph, this can be explained by the low number

Figure 5. Table representing the assumption checking for the ANCOVA on peak performance.

Figure 6. (a) Graph representing participants’ raw MI-BCI peak performance (i.e. without the ANCOVA correction) as a function of their
gender and of the run. (b) Graph representing the ANCOVA results for the gender–run interaction (p < 0.05), considering the mental rotation
scores as a covariable. When considering the performance independently from the mental rotation scores, women increase in performance
accross the four runs while men do not.

Figure 7. (a) Graph representing participants’ raw MI-BCI peak performance (i.e. without the ANCOVA correction) as a function of their
group from experiment 1 and of the run. (b) Graph representing the ANCOVA results for the group–run interaction (p < 0.05), considering
the mental rotation scores as a covariable. When considering the performance independently from the mental rotation scores, participants
from the good group of the first experiment obtain stable performance across the four runs, while participants from the bad group of the first
experiment begin with lower performance but then improve and outperform the other group in the third and fourth runs.
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of participants per group and should not impact the analysis
reliability [43]. Moreover, the homogeneity of the regression
slopes as well as the equality of variance criteria were both
satisfied. However, as was the case for the peak performance
analysis, the criteria of linearity was violated, which can be
explained by the small sample size. The ANCOVA with the
mean MI-BCI performance as the dependent variable was
associated with quite similar results as for the peak
performance. Indeed, it revealed a main effect of mental
rotation scores (F(1,15) = 5.817; p �0.05; h2 = 0.279) as
well as a strong tendency towards a main effect of the run (F
(1,15) = 4.100; p = 0.061; h2 = 0.215). However, no main
effect of the group (F(1,15) = 0.403; p = 0.535; h2 = 0.026)
or of the gender (F(1,15) = 2.965; p = 0.106; h2 = 0.165)
was revealed. Concerning the strong tendency towards a run
main effect, post hoc analyses (student t-tests for paired
measures) revealed a significant increase in the mean
performance between the first and the last runs (t = -2.542;
p �0.05) thus suggesting a learning effect, as was the case in
the peak performance analyses. This ANCOVA also revealed
several significant interactions. First, there was a run–mental
rotation scores interaction (F(1,15) = 7.545; p �0.05;
h2 = 0.335). Second, the run–gender interaction (F
(1,15) = 7.381; p �0.05; h2 = 0.330) suggests that while
men’s MI-BCI performances (corrected so that they are
independent from spatial ability scores) were stable across the
four runs, women’s increased significantly (see figure 10).

Furthermore, the run–group interaction (F(1,15) = 6.376; p
�0.05; h2 = 0.298) revealed that, considering performance
independently from participants’ spatial ability, participants
from the good group obtained a better performance than those
of the bad group at the first run, but then they did not improve
while participants from the bad group improved in terms of
performance (see figure 11), as was the case with the previous
ANCOVA. Finally, contrary to what we observed with peak
MI-BCI performance, it revealed a strong tendency towards a
gender–group interaction (F(1,15) = 3.833; p = 0.069;
h2 = 0.204) (see figure 12) but no run–gender–group
interaction (F(1,15) = 2.319; p = 0.149; h2 = 0.134).

5.2.2. MI-BCI performance and spatial ability. First, there was
a clear gender effect on the mental rotation score, consistent
with the literature: meanmen = 30.5 ± 7.12; meanwomen =
20.7 ± 7.21 (t-test; t = 3.058; p � 0.01). Then, both the
ANCOVAs (on mean and peak performance) revealed the
important impact of spatial ability with a main effect of
mental rotation scores on performance. Moreover, while
mental rotation scores were not correlated with mean MI-BCI
performance (r = 0.266; p = 0.257), they were correlated
with the peak MI-BCI performance (r = 0.464; p = 0.039).
These results confirm the important impact of spatial ability
on MI-BCI performance that was demonstrated in [17, 19].
More specifically, the positive correlation indicates that
people with better spatial ability (i.e. higher mental rotation

Figure 8. (a) Graph representing participants’ raw MI-BCI peak performance (i.e. without the ANCOVA correction) as a function of their
gender, of their group and of the run. (b) Graph representing the ANCOVA results for the gender–group–run interaction (p < 0.05),
considering the mental rotation scores as a covariable. When considering the performance independently from the mental rotation scores, it
can be noticed that women from the group bad (dark red on the left) improve in terms of performance accross the runs while all the other
participants do not.
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scores in this instance) obtain higher MI-BCI control
performance.

5.2.3. MI-BCI performance and the Blankertz SMR predictor.
We performed bivariate Pearson correlation analyses

to assess the relation between users’ mean and peak
MI-BCI performance and the mean Blankertz
SMR predictor (averaged over the four runs). Results
revealed no significant correlation between the predictor
and the mean MI-BCI performance (r = 0.151; p = 0.525)

Figure 9. Table representing the assumption checking for the ANCOVA on mean performance.

Figure 10. (a) Graph representing participants’ raw MI-BCI mean performance (i.e. without the ANCOVA correction) as a function of their
gender and of the run. (b) Graph representing the ANCOVA results for the gender–run interaction (p < 0.05), considering the mental rotation
scores as a covariable. When considering the performance independently from the mental rotation scores, women’s performance increases
while men’s does not.

Figure 11. (a) Graph representing participants’ raw MI-BCI mean performance (i.e. without the ANCOVA correction) as a function of their
group from experiment 1 and of the run. (b) Graph representing the ANCOVA results for the group–run interaction (p < 0.05), considering
the mental rotation scores as a covariable. When considering the performance independently from the mental rotation scores, it can be noticed
that participants from the group good of the first experiment obtain stable performance across the four runs while participants from the group
bad of the first experiment begin with lower performance but then improve and outperform the other group from the third run.
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nor with the peak MI-BCI performance (r = 0.078;
p = 0.743).

5.2.4. Usability questionnaires. We also evaluated the score
associated with the four dimensions of the UQ (LM, EE,
safety and satisfaction) as a function of the participant’s group
(good versus bad), gender (men versus women) and of their
mental rotation score. We thus performed four ANCOVAs.
The prerequisite checking is depicted in figure 13. The data
satisfied the criteria for a normal distribution, homogeneity of
the regression slopes and equality of variances.

However, it has to be noticed that the linearity criteria
was not satisfied. No effect of the group, of the gender nor an
interaction of both was revealed for the LM, the safety and the
satisfaction dimensions. For the EE dimension however, two
strong tendencies were revealed: a tendency towards a main
effect of the group (F(1,19) = 3.508; p = 0.081; h2 = 0.190)
and towards a group–gender interaction (F(1,19) = 3.439;

p = 0.083; h2 = 0.187). These interactions suggest that men
evaluated the EE of the MI-BCI protocol as the same
whatever their performance in the first experiment, while
women evaluated this dimension with lower scores when they
had difficulties in the first experiment, and with higher scores
when they managed in the first experiment. The fact we only
have tendencies could be due to the relatively low number of
participants (N = 20, i.e. only 5 per group–gender).

5.3. Discussion

This second experiment aimed at assessing the relationships
existing between MI-BCI performance, motor task perfor-
mance (obtained in the first experiment) and spatial ability
(measured by the mental rotation test). Participants globally
obtained modest performance, probably due to the fact they
only took part in one session, while several sessions are
necessary to acquire MI-BCI skills and thus improve in terms
of performance. Nonetheless, the ANCOVA results showed

Figure 12. (a) Graph representing participants’ raw MI-BCI mean performance (i.e. without the ANCOVA correction) as a function of their
gender and of their group. (b) Graph representing the ANCOVA results for the gender–group interaction (p < 0.05), considering the mental
rotation scores as a covariable. When considering the performance independently from the mental rotation scores, it can be noticed that men
from both groups (good and bad) keep the same ratio at the second experiment: participants from the good group outperform the ones from
the bad group. This is not the case for women. Indeed, while women from the good group obtain similar performance to men of their group,
women from the group bad outperform all the other participants.

Figure 13. Table representing the assumption checking for the ANCOVA. It should be noticed that all the assumptions but the linearity were
respected.
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that whatever performance measure was used (peak or mean
classification accuracy), there is a main effect of the mental
rotation scores as well as significant run–mental rotation, run–
gender and run–group interactions. First, the main effect of
mental rotation scores confirms the important impact of spa-
tial ability on BCI performance that was suggested in our
previous papers for mental imagery based BCI (not purely
motor ones) [17, 19]. The important role of spatial ability was
also strengthened by the significant correlation between MI-
BCI performance (peak classification accuracy) and mental
rotation scores. Second, the interactions suggest that when the
effect of the spatial ability is controlled for, (1) women
improved across the runs while men did not, and (2) parti-
cipants who were bad performers in the first experiment
began with lower MI-BCI performance than good performers.
However the former improved across the runs whereas the
latter did not. There is in fact a strong tendency (p = 0.058)
towards a run–gender–group interaction when assessing per-
formance using peak classification accuracy. This last inter-
action indicates that men kept the same ratio between the first
and the second experiment: men who were good at the first
experiment remained better at the second experiment than the
others (i.e. the bad performers of the first experiment) but
none of them improved during the second experiment.
Women who were good at the first experiment remained good
at the second (at the same performance level as the men of
their group), but they did not progress. However, women
from the bad group began with low performance in the second
experiment but their performance quickly improved and
eventually surpassed the others. Thus, it would seem that
participants who faced difficulty during the first experiment,
especially women, improved more easily in terms of perfor-
mance during the second experiment. This could be explained
by the fact that facing difficulty in the context of a complex
task (such as MI tasks, for which we are not trained and for
which we do not have any proprioceptive feedback) requires
subtantial cognitive resources. Thus, these resources are not
available to understand how to use the information provided
by the training protocol or by the feedback. By contrast, when
users face difficulty in finding the right strategy in a less
complex context (such as performing motor tasks that they
know they can do and for which they have proprioceptive
feedback) their available resources allow them to pay atten-
tion to the training protocol and feedback and to understand
how the latter could be used to improve their performance.
Once the process has already been executed, a re-exposition
to this protocol would not require as many resources and so
could be used efficiently in a more complex context.

In our case, understanding the feedback would mean
understanding what it means when the user should maintain
his strategy/when he should modify it. People who faced
difficulty during the motor task learned how and when to test
and modify their strategies, which helped them when con-
fronted with the MI-BCI experiment which was more com-
plex. Of course, this hypothesis needs to be tested in a future
experiment.

It is not entirely clear why gender plays a role in BCI
performance and observed training effects. A possible

interpretation could be that since women have lower spatial
ability than men on average, and that spatial ability is cor-
related to BCI performance, they have more room for
improvement, which could explain why they improved over
the runs while men did not. Another interpretation could be
that women may rely on different cognitive mechanisms and
strategies when faced with a difficult learning problem,
although we are not aware of any literature on this topic. This
should therefore be investigated further.

6. General discussion

The two experiments we conducted provide a number of
relevant insights regarding MI-BCI training with standard
training protocols. Our first experiment used a standard BCI
training protocol, the widely used Graz group protocol, to
teach non-BCI related sills, simple motor tasks in this case. It
showed that with such training tasks and feedback, a sub-
stantial proportion of subject, here 16.67%, i.e. 9 subjects out
of 54, failed to acquire the targeted skills despite their sim-
plicity (drawing triangles and circles). This suggests that such
a training protocol is suboptimal for skill teaching, and
therefore, that BCI illiteracy/deficiency is most likely due, at
least in part, to the limitations of the training protocol. In
particular, many participants reported that the feedback they
received, i.e. the bar feedback, provided too little information
to help them to improve. Thus, future research aimed at
reducing BCI illiteracy/deficiency and improving BCI train-
ing should consider providing richer and more explanatory
feedback, which helps users identify what they should change
in their EEG patterns and mental strategies to achieve suc-
cessful BCI control. Interestingly enough, this is also what is
theoretically recommended for successful training in human
learning and education psychology literature [28].

Our second experiment was aimed at measuring pos-
sible relationships between the performance obtained dur-
ing the motor task training (first experiment) and MI-BCI
training performance (second experiment). To do so, we
trained the ten best and ten worst participants from the first
experiment, to perform left-hand and right-hand MI. Con-
trary to our hypothesis, this second experiment did not
reveal any significant linear correlation between motor task
performance (first experiment) and MI-BCI performance. It
also did not reveal significant performance differences
between the ten best and tem worst participants from the
first experiment. This may be due to the fact that different
tasks were performed in the first and second studies, which
could represent a limitation. However, the same protocol (in
terms of instructions and feedback) was used in both stu-
dies. Moreover, in retrospect, this is not so surprising since,
as mentioned before, when dealing with BCIs, a number of
factors other than the training protocol and users’ learning
ability appear to affect BCI performance. In particular, the
EEG signal-to-noise ratio, the participants’ ability or
experience at performing motor imagery or the orientation
of their sensori-motor cortex with respect to the scalp,
among others, can all impact the quality of the EEG
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patterns, which in turn can impact BCI performance, inde-
pendently from the training protocol and the users’ learning
ability. Furthermore, our results revealed no relationship
between MI-BCI performance and the Blankertz SMR
predictor. The fact that this predictor is not significantly
correlated with MI-BCI performance could be partly due to
our experimental protocol. Indeed, as no 2 min long base-
line was recorded the predictor was computed based on the
concatenation of all the 3 s long pre-trials of the runs, which
could impact its performance. Nonetheless, this second
experiment did reveal some other interesting insights. First
it confirmed that spatial ability is related to mental imagery
based BCI performance. We have shown such a relationship
before for a mental imagery based BCI that was not based
purely on motor imagery, but on left-hand motor imagery,
mental geometric figure rotation and mental subtraction.
The study introduced in this paper suggests that spatial
ability also plays a role in purely motor imagery based BCI
performances, in which no mental rotation tasks are
involved. This thus confirms the importance of spatial
ability for successful BCI control, and reinforces the idea
that spatial ability training should be explored for BCI
training. Second it showed that when subjects are faced with
a pre-training session they perceive as difficult (here motor
learning tasks for subjects with poor performance), they
seem to explore more strategies and therefore learn better in
a subsequent training task, here MI-BCI training. This is an
interesting result as it suggests that in the future it would be
worth exposing naive BCI subjects to pre-training that
forces them to explore multiple strategies that might in turn
help them to find a better MI strategy in subsequent clas-
sical BCI training. Such an approach should be explored in
the future. Finally, this second experiment suggests that,
when spatial ability is controlled for, women (especially the
ones who faced difficulty in the first experiment) seem to
improve over time whereas men do not with such short term
training. However, this might be explained by women
having more room for improvement than men and/or dif-
ferent cognitive approaches to learning. Further studies
(both experimental and theoretical) should be performed to
elucidate this observation.

In summary, our studies have shown that current stan-
dard BCI training protocols such as the Graz training protocol
are suboptimal and most likely responsible for a substantial
part of observed BCI illiteracy/deficiency. They should
therefore be changed, in particular by providing more
explanatory feedback. Our two experiments also revealed the
importance of spatial ability and of a pre-training session on
subsequent MI-BCI performance. This therefore suggests that
exploring spatial ability training and specific pre-training
tasks for MI-BCI training are promising future prospects.
Altogether, our studies have opened the door to several new
research questions aimed at improving MI-BCI training and
thus at further increasing the reliability and potential of
MI-BCIs.
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Abstract
While being very promising for a wide range of applications, mental-imagery-based brain–

computer interfaces (MI-BCIs) remain barely used outside laboratories, notably due to the dif-

ficulties users encounter when attempting to control them. Indeed, 10–30% of users are unable

to control MI-BCIs (so-called BCI illiteracy) while only a small proportion reach acceptable

control abilities. This huge interuser variability has led the community to investigate potential

predictors of performance related to users’ personality and cognitive profile. Based on a lit-

erature review, we propose a classification of these MI-BCI performance predictors into three

categories representing high-level cognitive concepts: (1) users’ relationship with the tech-

nology (including the notions of computer anxiety and sense of agency), (2) attention, and

(3) spatial abilities. We detail these concepts and their neural correlates in order to better

understand their relationship with MI-BCI user-training. Consequently, we propose, by

way of future prospects, some guidelines to improve MI-BCI user-training.
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1 INTRODUCTION
Brain–computer interfaces (BCIs) are communication systems that enable their users

to send commands to computers by means of brain signals alone (Wolpaw and

Wolpaw, 2012). These brain signals are usually measured using electroencephalog-

raphy (EEG), and then processed by the BCI. For instance, a BCI can enable a user to

move a cursor to the left or to the right of a computer screen by imagining left- or

right-hand movements, respectively. Since they make computer control possible

without any physical activity, EEG-based BCIs have promised to revolutionize many

application areas, notably to control assistive technologies (eg, control of text input

systems or wheelchairs) for motor-impaired users (Millán et al., 2010; Pfurtscheller

et al., 2008) and rehabilitation devices for stroke patients (Ang and Guan, 2015) or as

input devices for entertainment and human–computer interaction (Graimann et al.,

2010), to name but a few (Van Erp et al., 2012). Despite this promising potential,

such revolutions have not yet been delivered, and BCIs are still barely used outside

research laboratories (Van Erp et al., 2012; Wolpaw and Wolpaw, 2012). The main

reason why current BCI fail to deliver is their substantial lack of reliability and ro-

bustness (Van Erp et al., 2012; Wolpaw and Wolpaw, 2012). In particular, BCI too

often fail to correctly recognize the user’s mental commands. For example, in a study

with 80 users, the average classification accuracy was only 74.4%, for a BCI using

two imagined movements as commands (Blankertz et al., 2010). Moreover, it is es-

timated that between 10% and 30% of BCI users, depending on the BCI type, cannot

control the system at all (so-called BCI illiteracy/deficiency) (Allison and

Neuper, 2010).

BCIs, as the name suggests, require the interaction of two components: the user’s

brain and the computer. In particular, to operate a BCI, the user has to produce EEG

patterns, eg, using mental imagery tasks, which the machine has to recognize using

signal processing andmachine learning. So far, to address the reliability issue of BCI,

most research efforts have been focused on EEG signal processing and machine

learning (Allison and Neuper, 2010; Bashashati et al., 2007; Makeig et al., 2012).

While this has contributed to increased performances, improvements have been

relatively modest, with classification accuracy being still relatively low and BCI

illiteracy/deficiency still high (Allison and Neuper, 2010; Wolpaw and Wolpaw,

2012). To make BCI truly reliable and thus useful, it is also necessary to ensure

the user can produce clear, stable, and distinct EEG patterns. Indeed, BCI control

is known to be a skill that must be learned and mastered by the user (Wolpaw

and Wolpaw, 2012). This means that (1) the BCI performances of a user become

better with practice and thus that (2) the user needs to learn how to produce these

stable, clear, and distinct EEG patterns to successfully control a BCI (Lotte et al.,

2013a; Neuper and Pfurtscheller, 2010). This need for training is particularly salient

for BCI based on mental-imagery (MI) tasks. With the so-called mental-imagery-

based brain–computer interfaces (MI-BCIs), users send mental commands by

performing MI tasks, eg, movement imagination or mental mathematics, which

are then recognized by the BCI and translated into commands for the application.
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In this chapter, we focus on this type of BCI which is prominent in many BCI ap-

plications such as stroke rehabilitation (Ang and Guan, 2015), the control of wheel-

chairs or prosthetics (Millán et al., 2010), and entertainment applications (Lotte et al.,

2013b), among many others.

Designing a reliableMI-BCI thus requires that theMI-BCI user has been properly

and specifically trained to control that BCI. Current training approaches have been

rather similar across the different MI-BCI designs so far, and can be divided into two

main families: the operant conditioning approach (Wolpaw et al., 1991) and the ma-

chine learning approach (Millán et al., 2002). While these two training approaches

differ in the way the classifier is defined (manually defined vs optimized on EEG

data), both approaches require to provide feedback to user. Such feedback is gener-

ally visual, indicating both the mental task recognized by the classifier together with

the system’s confidence in the recognized task. A typical and very popular example

is the Graz BCI protocol (Pfurtscheller and Neuper, 2001). In this protocol, users are

instructed to perform kinesthetic imagination of left- or right-hand movements fol-

lowing the on-screen display of an arrow pointing either left or right, respectively.

They then receive visual feedback in the form of a bar extending toward the left or the

right, depending on whether a left- or right-hand movement was recognized by the

BCI. The length of the bar is proportional to the classifier output. Users are typically

trained with such an MI-BCI protocol over several sessions (ie, on several days),

each session being composed of 4–6 runs, and a run comprising about 15–20 trials

per mental task.

However, even with state-of-the-art signal processing and classification algo-

rithms, a tremendous inter-, and intra-subject variability has been observed in terms

of performance (command classification accuracy) in virtually every MI-BCI paper,

both with the machine learning and the operant conditioning approaches (Allison and

Neuper, 2010; K€ubler et al., 2013; Wolpaw andWolpaw, 2012). Thus, it is now clear

that one of the major aspects contributing to MI-BCI control performances is the in-

dividual characteristics of the BCI user (K€ubler et al., 2013). However, it is neither

entirely clear which characteristics do impact BCI performances, why they have such

an impact nor what the extent of this impact is. This has led the BCI community to

look for predictors of MI-BCI performance, ie, individual characteristics that corre-

late with the command classification accuracy. Indeed, identifying such predictors

would allow BCI designers to find the most suitable BCI for a given user. Alterna-

tively, or additionally, identifying such predictors would enable BCI researchers to

identify what makes some users fail to control MI-BCI and thus to work on designing

specific solutions. In particular, a promising research direction would be to propose

MI-BCI training approaches that are adapted to users, according to their character-

istics (Lotte and Jeunet, 2015; Lotte et al., 2013a). Interestingly enough, a number of

neurophysiological predictors have been identified, as reviewed in Ahn and Jun

(2015). Some psychological predictors have also been identified for P300-based

BCI and BCI based on sensorimotor rhythms (SMR) (Kleih and K€ubler, 2015). How-

ever, to the best of our knowledge, there is no comprehensive and up-to-date review

that surveys the psychological and cognitive factors that impact MI-BCI
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performances, presents some cognitive mechanisms that could explain why they

have such an impact, sheds light on the underlying neural correlates of these factors

and proposes theoretical solutions that could take these factors into account to im-

prove MI-BCI training. This is therefore what this chapter sets out to offer.

First, this chapter surveys the BCI literature in order to identify the psychological

and cognitive factors that correlate with MI-BCI performance (Section 2). This sur-

vey allowed the identification of different predictors that can be organized into three

main categories, each representing a higher-level cognitive concept. In particular, it

was found that existing predictors of MI-BCI performance were mostly related to the

relationship between users and technology, their attention and their spatial abilities.

Thus, the following sections define each of these concepts in more detail, and de-

scribe their neural correlates: the user–technology relationship is dealt with in

Section 3, attention is discussed in Section 4 and spatial abilities are attended to

Section 5. Finally, Section 6 proposes some future prospects and theoretically prom-

ising levers to improve MI-BCI training by taking into account each of these three

high-level factors.

2 PSYCHOLOGICAL AND COGNITIVE FACTORS RELATED
TO MI-BCI PERFORMANCE
This first section offers a review of the latest developments in our understanding of

the psychological and cognitive factors reported to influence MI-BCI performance

(ie, control accuracy). These factors can be divided into three groups. The first group

includes the factors associated with the States of the user. Users’ states are described

by Chaplin et al. (1988) as “temporary, brief, and caused by external circumstances.”

The second group gathers the factors related to the users’ Traits, characterized as

“stable, long-lasting, and internally caused” with respect to one’s environment

and experience (Chaplin et al., 1988). Finally, the third group comprises the factors

that can be qualified neither as Traits nor as States, ie, demographic characteristics,

habits, and environment-related factors.

2.1 EMOTIONAL AND COGNITIVE STATES THAT IMPACT MI-BCI
PERFORMANCE

Some aspects of users’ states, and more specifically of their cognitive and emotional

states, have been reported to influence their MI-BCI performance in terms of control

accuracy. First, Nijboer et al. (2008) have shown that mood (measured using a sub-

scale of the German Inventory to assess Quality of Life—Averbeck et al., 1997) cor-

relates with BCI performance. On the other hand, both attention (Daum et al., 1993;

Grosse-Wentrup et al., 2011; Grosse-Wentrup and Sch€olkopf, 2012), assessed for

instance by means of digit spans or block taping spans (Daum et al., 1993), and mo-

tivation (Hammer et al., 2012; Neumann and Birbaumer, 2003; Nijboer et al., 2008)

levels have repeatedly been shown to positively correlate with performance, both in
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the context of slow cortical potential (SCP) and SMR-based BCI. Furthermore, in

their study, Nijboer et al. (2008) suggested that higher scores in mastery confidence,

ie, how confident the participant was that the training would be successful, were cor-

related to better SMR regulation abilities, whereas higher rates of fear of incompe-

tence were correlated to lower SMR regulation abilities. This last point has also been

suggested in Kleih et al. (2013) for stroke patients taking part in BCI-based rehabil-

itation. More generally speaking, fear of the BCI system has been shown to affect

performance (Burde and Blankertz, 2006; Nijboer et al., 2010; Witte et al., 2013).

In the same vein, control beliefs (Witte et al., 2013), ie, participants’ beliefs that their

efforts to learn would result in a positive outcome, and self-efficacy (Neumann and

Birbaumer, 2003), which can be defined as participants’ beliefs in their own abilities

to manage future events, have been suggested to play a role in BCI performance, in

an SMR and an SCP paradigm, respectively. Mastery of confidence, control beliefs,

and self-efficacy can be classed as context-specific states, ie, states triggered each

time a person faces a specific situation.

2.2 PERSONALITY AND COGNITIVE TRAITS THAT INFLUENCE MI-BCI
PERFORMANCE

On the one hand, several aspects of the cognitive profile have been related to BCI

control ability. Memory span and attentional abilities have been shown to correlate

with the capacity to regulate SCP in patients with epilepsy (Daum et al., 1993).

Hammer et al., (2012) also showed that attention span played a role in one-session

SMR-BCI control performance. In addition, active learners seem to perform better

than reflective learners (Jeunet et al., 2015a) in a context of MI-BCI control. This

dimension, active vs reflective, is one of the four dimensions of the Learning Style

that can be assessed using the Index of Learning Style test (Felder and Spurlin, 2005).

Abstractness, ie, imagination abilities, has also been shown to correlate with classi-

fication accuracy in an MI-BCI experiment (Jeunet et al., 2015a). Furthermore,

Hammer et al. (2012) have proposed a model for predicting SMR-BCI

performance—which includes visuomotor coordination (assessed with the Two-

Hand Coordination Test) and the degree of concentration (assessed with the Atti-

tudes Towards Work)—that reaches significance. More recently, Hammer et al.

(2014) tested this model in a four session experiment (one calibration and three train-

ing sessions) within a neurofeedback-based SMR-BCI context (ie, involving no

machine learning). Their results showed that these parameters explained almost

20% of SMR-BCI performance in a linear regression. However, the first predictor,

ie, visual–motor coordination, failed significance. With this model, the average pre-

diction error was less than 10%.Moreover, kinesthetic imagination and visual–motor

imagination scores have both been shown to be related to BCI performance by

Vuckovic and Osuagwu (2013). Finally, a strong correlation [r¼0.696] between

mental rotation scores and MI-based BCI performance has been reported (Jeunet

et al., 2015a) in a six session experiment, during which participants had to learn

to perform three MI tasks (motor imagery of the left hand, mental subtraction,
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and mental rotation of a 3D shape). This finding has recently been replicated in an

experiment based purely on motor imagery (imagination of left- and right-hand

movements) in which mental rotation scores correlated with participants’ peak per-

formance [r¼0.464] (Jeunet et al., 2016).

On the other hand, concerning personality traits, Burde and Blankertz (2006)

have obtained a positive correlation between a Locus of control score related to

dealing with technology and the accuracy of BCI control. More recently, tension

and self-reliance (ie, autonomy toward the group) were related to MI-BCI per-

formance (measured in terms of classification accuracy) in a model also including

abstractness abilities and the active/reflective dimension of the learning style

(Jeunet et al., 2015a). This model enabled prediction of more than 80% of the

between-participant variance in terms of performance with an average prediction

error of less than 3%.

2.3 OTHER FACTORS IMPACTING MI-BCI PERFORMANCE:
DEMOGRAPHIC CHARACTERISTICS, EXPERIENCE, AND ENVIRONMENT

Some other factors that have also been related to the ability to control a BCI, cannot

be classified as either traits or states. These factors can be divided into three catego-

ries: (1) demographic characteristics, (2) experience/habits, and (3) environment.

Concerning the first point, demographic characteristics, age, and gender have been

related to SMR-BCI performance (Randolph, 2012): women being more capable

than men and over 25 year-olds being more competent than their younger counter-

parts. On the other hand, some habits or experiences have been shown to increase

SMR-BCI control abilities (Randolph, 2012; Randolph et al., 2010). More specifi-

cally, playing a musical instrument, practicing a large number of sports, playing

video games (Randolph, 2012), as well as spending time typing and the ability to

perform hand and arm or full-body movements (Randolph et al., 2010) positively

impact SMR-BCI performance. However, the consumption of affective drugs seems

to have the opposite effect (Randolph et al., 2010). Finally, the user’s environment,

and more particularly the quality of caregiving for patients, has been suggested in an

anonymous report to play a role in SMR-BCI performance (Kleih and K€ubler, 2015).

2.4 TO SUMMARIZE: MI-BCI PERFORMANCE IS AFFECTED BY THE
USERS’ (1) RELATIONSHIP WITH TECHNOLOGY, (2) ATTENTION,
AND (3) SPATIAL ABILITIES

To summarize, the predictors of MI-BCI performance can be gathered into the three

following categories, as depicted in Table 1:

• Category 1—The user–technology relationship and the notion of control (spades,

see Table 1): indeed, based on the literature, it appears that people who apprehend

the use of technologies (and more specifically the use of BCIs) and who do not

feel in control, experience more trouble controlling BCIs.
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Table 1 This Table Summarizes the Different Predictors (State, Trait, and

Others) That Have Been Related to MI-BCI Performance in the Literature

States Emotional

state

♣ Mood (Nijboer et al., 2008)

Cognitive

state

♣ Attention level (Grosse-Wentrup and Sch€olkopf, 2012;

Grosse-Wentrup et al., 2011)

♣ Motivation (Hammer et al., 2012; Neumann and

Birbaumer, 2003; Nijboer et al., 2008)

♠ Mastery confidence (Nijboer et al., 2008)

♠ Fear of the BCI (Burde and Blankertz, 2006; Nijboer et al.,

2010; Witte et al., 2013)

♠ Control beliefs (Witte et al., 2013)

♠ Fear of incompetence (Kleih et al., 2013; Nijboer et al.,

2008)

♠ Self-efficacy (Neumann and Birbaumer, 2003)

Traits Personality ♠ Locus of control for dealing with technology (Burde and

Blankertz, 2006)

♠ Tension (Jeunet et al., 2015a)

♠ Self-reliance (Jeunet et al., 2015a)

Cognitive

profile

♣ Attention span (Hammer et al., 2012)

♣ Attentional abilities (Daum et al., 1993)

♣ Attitude toward work (Hammer et al., 2012)

♣ Memory span (Daum et al., 1993)

♦ Visual–motor coordination (Hammer et al., 2012, 2014)

♦ Learning style: active vs reflective learners (Jeunet et al.,

2015a)

♦ Kinesthetic imagination score (Vuckovic and Osuagwu,

2013)

♦ Visual–motor imagination score (Vuckovic andOsuagwu,

2013)

♦ Mental rotation scores (Jeunet et al., 2015a)

♦ Abstractness (Jeunet et al., 2015a)

Other

factors

Demographic

data

• Age (Randolph, 2012)

• Gender (Randolph, 2012)

Experience ♦ Playing a music instrument (Randolph, 2012)

♦ Practicing sports (Randolph, 2012)

♦ Playing video games (Randolph, 2012)

♦ Hand and arm movements (Randolph et al., 2010)

♦ Time spent typing (Randolph et al., 2010)

♦ Full body movements (Randolph et al., 2010)

♣ Consumption of affective drugs (Randolph et al., 2010)

Environment • Quality of caregiving (Kleih and K€ubler, 2015)

The predictors related to the user–technology relationship are associated to spades, while those related

to attention are associated to clubs and those related to spatial abilities are associated to diamonds.
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• Category 2—Attention (clubs, see Table 1): this category includes both

attentional abilities (trait) and attention level (state). The latter can fluctuate with

respect to different parameters such as environmental factors, mood, or

motivation. Both these aspects of attention have been repeatedly evoked as being

predictors of BCI performance.

• Category 3—Spatial Abilities (diamonds, see Table 1): many predictors depicted

in the previous brief review are related to motor abilities (eg, two-hand

coordination, sports, or music practice) or to the ability to produce mental images

(eg, kinesthetic imagination scores or abstractness abilities). These predictors can

be gathered under the label of “spatial abilities.”

It is noteworthy that in the vast majority of the experiments during which the

predictors were computed, users were BCI-naı̈ve and thus novices. Indeed, as stated

earlier, predictors were generally computed during the first training session, whereas

learning to control an MI-BCI requires several training sessions (McFarland et al.,

2010; Neuper and Pfurtscheller, 2010; Pfurtscheller and Neuper, 2001). In the next

paragraph, we will argue that the involvement of the predictors in Category 1, ie, the

User–Technology Relationship and the Notion of Control, can be explained by the

fact that users were BCI-naı̈ve while the involvement of the predictors in Categories

2 and 3, ie, Attention and Spatial Abilities, can be explained by the fact they were

novices.

First, when confronted with a new technology, and even more so when this tech-

nology is associated with a new interaction paradigm (as is the case here with MI),

users are likely to experience anxiety and a related low feeling of control during their

first interaction attempts. Yet, the level of control perceived by a user (ie, to what

extent they consider being responsible for the perceived outcome of their actions)

has been shown to positively correlate with motivation, performance, and general

skill acquisition (Achim and Al Kassim, 2015; Saad�e and Kira, 2009; Simsek,

2011). These elements, which will be described in further detail in Section 3, both

explain why the notions of anxiety and control are involved in BCI performance and

how they are related to other predictors.

Second, the definition of attention and spatial abilities as two major categories of

MI-BCI performance predictors is consistent with Phase # 1 of the Ackerman model

of interindividual differences during skill acquisition (Ackerman, 1988). In his

model, Ackerman argues that skill acquisition is divided into three phases and that

interindividual differences are explained by different factors according to the phase

in which the user is (Neumann and Birbaumer, 2003):

• Phase #1: Slow and error prone performance—During this phase, interindividual

differences are mainly explained (1) by task-appropriate abilities and (2) by

“cognitive-intellectual general ability, involving a strong demand on the

cognitive attentional system” (Neumann and Birbaumer, 2003).

• Phase #2: Redefinition and strengthening of the stimulus-response connections of

the skill—During this second phase, speed of perception plays a major role in

interindividual differences.
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• Phase #3: Automatic phase—During this third phase, noncognitive psychomotor

abilities are mostly responsible for interindividual differences (Wander

et al., 2013).

As stated earlier, BCI users were in an early stage of learning, ie, in Phase #1 of the

Ackerman model, when the predictors were computed. This is coherent with the fact

that BCI literature reports a strong involvement of (1) spatial abilities and (2) atten-

tion. Spatial abilities correspond to the ability to produce, transform, and interpret

mental images (Poltrock and Brown, 1984). Thus, they can be defined as “task-

appropriate” abilities for anMI-BCI control task. On the other hand, the involvement

of attentional state and trait is consistent with the second factor responsible for inter-

individual differences in Phase #1, namely, “cognitive-intellectual general ability”

and the “cognitive attentional system.”

The concepts associated with each of the three categories of predictors,

ie, relationship with technology, attention, and spatial abilities are introduced, and

their neural correlates are described in the following sections.

3 THE USER–TECHNOLOGY RELATIONSHIP: INTRODUCING
THE CONCEPTS OF COMPUTER ANXIETY AND SENSE OF
AGENCY—DEFINITION AND NEURAL CORRELATES

In the previous section, we stated that some predictors of MI-BCI performance could

be gathered under the label “user–technology relationship.” These factors can be di-

vided into two categories: (1) the apprehension of the use of technology and (2) the

notion of control.

On the one hand, the fear of the BCI system (Burde and Blankertz, 2006; Nijboer

et al., 2010; Witte et al., 2013), the fear of incompetence (Kleih et al., 2013; Nijboer

et al., 2008), and tension (Jeunet et al., 2015a), all having been shown to negatively

impact MI-BCI performance, reflect a certain apprehension of the user toward BCI

use. This apprehension can be defined as computer anxiety (CA).

On the other hand, the locus of control related with dealing with the technology

(Burde and Blankertz, 2006) will influence the extent to which users feel in control

while using the BCI. In the same vein, levels of mastery confidence (Nijboer et al.,

2008), control beliefs (Witte et al., 2013), and self-efficacy (Neumann and

Birbaumer, 2003) will impact the experience of control of the technology. An exper-

imental study (Brosnan, 1998) suggested that self-efficacy would determine the way

the person attempts to solve the task and that it would explain around 50% of the

variance in the task performance. Besides, self-efficacy has been suggested to be re-

lated to motivation, work engagement, and performance (Achim and Al Kassim,

2015). This would be consistent with the MI-BCI literature as both self-efficacy

and motivation were involved in MI-BCI users’ control abilities. It appears that peo-

ple with high a self-efficacy level perceive failure as a challenge, and not as a threat

(Achim and Al Kassim, 2015) which could explain why they are prone to persevere,
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and thus more likely to reach good performances. Furthermore, Vlek et al. (2014)

indicate that when users feel in control, their attitude toward the BCI system is more

positive which enables them to replenish mental resources and increase motivation

which in turn induces a better task engagement. Both these studies and the predictors

stress the importance of the notion of control to reach better MI-BCI control abilities.

This notion of control can be conceptualized as the sense of agency.

These two aspects of the user–technology relationship, namely the apprehension

of the technology and the notion of control, are much related. In the following sec-

tions, we will further detail these two phenomena and the neural correlates associated

to the sense of agency (indeed, to our knowledge, no studies have investigated the

neural correlates of the specific concept of CA). We will notably see that the sense

of agency (ie, the feeling of being in control) actually mediates CA (ie, the apprehen-

sion of the technology).

3.1 APPREHENSION OF TECHNOLOGY: THE CONCEPT
OF CA—DEFINITION

Computer Anxiety (CA), also called “Tech-Stress” (Achim and Al Kassim, 2015),

can be classed as a context-specific anxiety, ie, a transitory neurotic anxiety ranging

between anxiety trait and anxiety state (Saad�e and Kira, 2009). Indeed, it is a kind of

anxiety specifically associated to one context: the use of a computer or of a

computer-based technology.

Brosnan (1998) has shown that CA has a direct influence over performance when

an unforeseen or unknown event occurs during the interaction process. Moreover,

CA has been shown to impact the perceived ease-of-use of the technology,

ie, high CAwill result when perceived difficulty is high. Both these elements explain

why CA plays a major part when people are first exposed to new technologies, es-

pecially when the paradigm of interaction is new for them, as is the case for MI-BCI

control. Brosnan (1998) insists on the fact that even those who do not usually expe-

rience it, may undergo CA when confronted with a piece of technology that is new to

them. Besides, around one-third of the population is thought to experience CA to

some degree: from preferring not to use the technology to palpitations while using

it (Brosnan, 1998). The relationship between anxiety and performance could be

explained, according to Brosnan (1998), by the fact that anxious people devote more

cognitive resources to “off-task” efforts (such as worrying about their performance),

which induces shifts in attention between task and “off-task” considerations. As a

consequence, the focused attention level dedicated to the task is decreased and fewer

resources are available to perform the task. Thus, the task takes longer to complete,

and performances drop in the case of tasks in which a limited amount of time is al-

located. Furthermore, Simsek (2011) identifies CA as being an affective response

due to one’s beliefs about one’s lack of ability to control the technology. This per-

ception of the level of control that one can exert on the task corresponds to the con-

cept of self-efficacy. Simsek (2011) argues that decreasing CA, and thus increasing

self-efficacy, would lead to a better skill acquisition.
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To summarize, based on empirical and theoretical studies, it seems that CA levels

could enable to predict one’s level of self-efficacy, which in turn could enable pre-

diction of one’s performance. More specifically, self-efficacy mediates the impact of

CA on performance (Saad�e and Kira, 2009).

3.2 “I DID THAT!”: THE CONCEPT OF SENSE OF AGENCY—DEFINITION

The sense of agency can be defined as “the sense that I am the one who is causing or

generating an action” (Gallagher, 2000). The sense of agency is of utmost importance

when a person is controlling an external device, since it will influence their affect

toward the technology, and thus their commitment to the task and their performance

(Vlek et al., 2014). However, in the context of MI-BCI, experiencing this sense

of agency is not straightforward. Indeed, as a component of the “who” system

(De Vignemont and Fourneret, 2004; Farrer and Frith, 2002), ie, a mechanism which

allows one to attribute one’s own actions to oneself, the sense of agency depends on

the sensory feedback resulting from the action. In other words, it depends upon a

bodily experience (Damasio, 1999). Yet, the absence of proprioceptive feedback

when performing MI tasks prevents this bodily experience from occurring

(Haselager, 2013), and should theoretically inhibit the sense of agency. However,

evidence exists that the sense of agency does not only depend on the outcome of

an action, but also that it is triggered before the action takes place (Gallagher,

2012; Synofzik et al., 2008) which explains why MI, under certain conditions,

can be associated with a sense of agency (Peres-Marcos et al., 2009).

The sense of agency can be divided into two components (Farrer and Frith, 2002;

Gallagher, 2012; Synofzik et al., 2008): (1) the feeling of agency and (2) the judge-

ment of agency (also called feeling of ownership). The feeling of agency is pre-

reflective, implicit, low-level, and nonconceptual while the judgement of agency

is reflective, explicit, high-order, belief-like, and conceptual. In other words, the

feeling of agency precedes the action, and triggered during the preparation of the

action, while the judgement of agency results from the computation of the compar-

ison between the predicted and actual outcomes of the action. Synofzik et al. (2008)

explains that a feeling of agency must be conceptually processed for a judgement or

an attribution of agency to occur. The judgement of agency has been investigated in

more depth than the feeling of agency in the literature (Chambon et al., 2013).

In order to experience a judgement of agency, three principles must be respected

(Vlek et al., 2014): (1) the priority principle: the conscious intention to perform an act

must immediately precede the action, (2) the consistency principle: the sensory out-

come must fit the predicted outcome, and (3) the exclusivity principle: one’s

thoughts must be the only apparent cause of the outcome (ie, one must not believe

there to be an outside influence). Moreover, several indicators influencing the judge-

ment of agency have been proposed (Wegner, 2003; Wegner et al., 2004): bodily and

environmental cues (Where am I?), bodily feedback (proprioceptive and kinesthetic

information), bodily feedforward (ie, the predicted sensory feedback), sensory feed-

back, social cues, action consequences, and action-relevant thoughts (thinking about
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doing beforehand, in other words: the feeling of agency). On the one hand, the

absence of some of these markers can lead to “a case of automatism” (Wegner,

2003), that is to say to the absence of judgement of agency: the agent is “doing with-

out feeling.” On the other hand, the manipulation of the samemarkers can lead to “an

illusion of agency/ownership” (Wegner, 2003): agents who are “feeling without

doing,” and thus think they are in control although they are not.

3.3 “I DID THAT!”: THE CONCEPT OF SENSE OF AGENCY—NEURAL

CORRELATES

As stated by Ehrsson et al. (2004), the neural correlates underlying the sense of

agency remain poorly understood. However, some brain regions have been repeat-

edly associated with this phenomenon. More specifically, here we will focus on the

premotor cortex (PMC), and more precisely on its ventral part, ie, the supplementary

motor area (SMA), as well as on the angular gyrus (AG) which is part of the posterior

parietal cortex (PPC), on the anterior insula and on the cerebellum. All of the afore-

mentioned brain areas have been reported to be involved in sensorimotor transfor-

mation and motor control as well as in the sense of agency (David et al., 2008).

Self-agency has been shown to be underlain by an increased activity in the PMC

(Ehrsson et al., 2004; Farrer and Frith, 2002) and more specifically in its ventral part,

the SMA (Farrer and Frith, 2002; K€uhn et al., 2013). The neural populations in the

ventral PMC (SMA) and parietal PMC have been stated to represent both the seen

and felt position of the limbs (Ehrsson et al., 2004). Thus, it is thought that the PMC

enables a multisensory integration and thus provides a mechanism for bodily attri-

bution (Ehrsson et al., 2004). Farrer and Frith (2002) have also suggested that the

insula may play a role in the experience or agency. More specifically, they measured

an increase in activity in the anterior insula when a person was aware of causing an

action. The authors justify this implication by the fact that the insula’s role is to in-

tegrate all the concordant multimodal sensory signals associated with voluntary

movements. This result seems very consistent with the literature, since the activation

of both these regions has been linked to awareness and execution of self-generated

actions, to action preparation and to subjects’ own intention to act (David

et al., 2008).

Contrariwise, the activation of the PPC has been shown to negatively correlate

with the sense of agency: the more a person tends to attribute the action to another

person, the more the PPC is activated (Farrer and Frith, 2002). In other words, the

activity in the PPC—andmore specifically in the AG—increases when discrepancies

are noticed between the predicted and the actual sensory outcomes of the action

(Chambon et al., 2013). Indeed, PPC activation is linked to the processing of

visual–motor incongruence during self-generated actions (David et al., 2008). In this

process, the cerebellum acts as a relay to inform about the sensorimotor discrepan-

cies between the predicted and actual outcomes of the action (David et al., 2008). But

it seems that the AG also monitors the signals linked to action selection in the dor-

solateral prefrontal cortex to prospectively provide information about the subjective
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feeling of control over action outcomes (Chambon et al., 2013). Thus, the online

monitoring of these signals by the AG may provide the subject with “a subjective

marker of volition, prior to the action itself” (Chambon et al., 2013). While consis-

tent, these correlates are still discussed. For instance, K€uhn et al. (2013) report no

correlation between AG activation and their subjective measure of agency.

The fact that these brain areas belong to different functional brain networks could

explain their role in self-agency. For instance, the insula and the PPC have been

shown to be involved in complex representations of the self (Farrer and Frith,

2002). Farrer and Frith (2002) suggested that the relocation from the insula (when

experiencing self-agency) to the PPC (when attributing the outcome to another per-

son) could correspond to a shift in the attentional process from the egocentric to the

allocentric point of view. In a similar vein, the PPC and the SMA are the key nodes in

the human mirror neuron system: they encode motor aspects of actions performed by

oneself or by another person (David et al., 2008).

To summarize, the sense of agency seems to be related to complex interconnec-

tions between several brain areas enabling one to experience (1) a feeling of agency

before the action outcome (through the involvement of the PMC/SMA and cerebel-

lum among others) but also (2) a judgement of agency by comparing the predicted

and perceived outcomes (notably through the activation of the insula and the AG/

PPC). However, the neural processes involved in each of these phenomena, namely

the feeling and judgement of agency, as well as the differences between both, require

further investigation (David et al., 2008).

4 ATTENTION—DEFINITION AND NEURAL CORRELATES

The second category of factors that have been found to correlate with BCI perfor-

mances contains attention-related predictors. Indeed, both attentional traits, ie, the

BCI user’s intrinsic attentional capacities, and attentional states, ie, the amount of

the user’s attentional resources dedicated to the BCI task, were found to be correlated

to BCI performances. To summarize (see Table 1), the attentional traits predicting

BCI performances include attention span (Hammer et al., 2012), attentional abilities

(Daum et al., 1993), attitude toward work (Hammer et al., 2012) which also measures

the capacity to concentrate on a task, and memory span (Daum et al., 1993) which

measures the ability to maintain attention (Engle et al., 1999). The higher the atten-

tional abilities of BCI users, the better the BCI classification accuracy they will

reach. There is also some evidence that the attentional state of BCI users seems

to be correlated to their BCI performances. Indeed, two different neurophysiological

markers based on neural correlates of the attentional state were defined andmeasured

in single-trial EEG signals. They were both found to be significantly correlated to the

classification accuracy obtained for these trials (Bamdadian et al., 2014; Grosse-

Wentrup and Sch€olkopf, 2012; Grosse-Wentrup et al., 2011) (see Section 4.2 for

more details on these two EEG predictors based on attentional states).
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Another factor, which is not a result of attention alone but is, however, related to

it, is the user’s motivation for a given BCI session, which has also been found to be

predictive of their BCI performances (Hammer et al., 2012; Neumann and

Birbaumer, 2003; Nijboer et al., 2008). Indeed, attention appears to be a critical fac-

tor in many models of motivation (Keller, 2008, 2010).

Finally, there are a number of other factors that have been found to be correlated

to BCI performances that are not related to attention per se, but that are likely to im-

pact the attentional resources that users devote to the BCI task. These include mood

(Nijboer et al., 2008), the consumption of affective drugs (Randolph et al., 2010), as

well as environmental factors for patients such as room temperature, sleep quality, or

headaches (Neumann and Birbaumer, 2003).

The following sections define and describe in more detail some of the cognitive

mechanisms of attention, their associated neural correlates, and their relevance to

BCI control.

4.1 ATTENTION—DEFINITION

Attention could be defined as the “the ability to focus cognitive resources on a par-

ticular stimulus” (Frey et al., 2014b). According to Posner and Petersen (1990), the

attention system can be divided into three main subsystems, each of which corre-

sponds to a major attentional function. These three subsystems are the alerting

system, the orienting system, and the executive control system. The alerting function

is responsible for maintaining a state of vigilance over long periods of time, ie, it is

responsible for sustained attention. Sustained attention (or vigilance) is necessary to

perform long and usually tedious tasks. The orienting function is involved in select-

ing information among different information streams, such as different modalities

(sounds, images) or different spatial or temporal locations. It is implicated in ignor-

ing distracting events, and is thus involved in what is known as selective attention.

The third function, executive control, is involved in the awareness of events and in

the management of attentional resources, which are limited. Indeed, two tasks com-

peting for attention will interfere with each other, thus possibly reducing perfor-

mances for these tasks. Executive control is therefore involved in what is known

as focal attention. For further details concerning the different components of atten-

tion, the interested reader can refer to Petersen and Posner (2012), Posner and Boies

(1971), and Posner and Petersen (1990). It is also important to note that attentional

abilities and resources vary between individuals (Petersen and Posner, 2012).

Attention has been known for many years to be necessary in ensuring successful

learning (Nissen and Bullemer, 1987). Indeed, if learners do not assign enough atten-

tional resources to a given learning task, eg, because they have to perform dual-

attentional tasks (ie, split their attentional resources between two tasks), their learning

performance will be greatly reduced, or they may even fail to be aware of relevant

learning material and fail the learning task altogether (Nissen and Bullemer, 1987).

Keller even stated that “attention is a prerequisite for learning” (Keller, 1987). This

gave birth to the ARCS model of instructional design, a well-known model used to
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design learning material and training tasks (Keller, 1987, 2008). ARCS stands for

attention, relevance, confidence and satisfaction, which are the four main compo-

nents of human motivation that are necessary to ensure successful learning. In order

to ensure an efficient instruction and training, the ARCS model states that it is

necessary to get the attention of students on the relevant learning stimulus (thus

ignoring distractors), and to sustain this attention over the duration of the instruction,

in order to focus the attentional resources on training-relevant problems (Keller,

1987). We can see here that the three subsystems of attention (sustained attention,

selective attention, and focal attention) are therefore involved in the learning process.

Since BCI control requires training, it therefore makes sense that it also requires the

user’s attentional resources, and thus that attention and motivation are predictors of

BCI performance.

4.2 ATTENTION—NEURAL CORRELATES

Interestingly enough, the attention system corresponds to specific anatomical struc-

tures in the brain that are different than those dedicated to information processing

(Posner and Petersen, 1990). Each of the three attention subsystems (alerting, orient-

ing, and executive control) corresponds to a specific brain network (Petersen and

Posner, 2012; Posner and Petersen, 1990). The alerting network, although still not

fully understood, seems to primarily involve the right hemisphere (frontal and pari-

etal lobes), including the right inferior parietal lobule with the AG and thalamic areas

(Petersen and Posner, 2012; Seghier, 2013). The orienting network notably involves

the frontal eye fields, the intraparietal sulcus and the superior parietal lobe, the tem-

poroparietal junction, the AG, and the ventral frontal cortex (Petersen and Posner,

2012; Seghier, 2013). Finally, the Executive Network involves multiple brain areas,

including the medial frontal cortex, the anterior cingulate cortex, the dorsolateral

prefrontal cortex, the anterior prefrontal cortex, the precuneus, the thalamus, the

anterior insula, the intraparietal sulcus, and the intraparietal lobule. There is large

interindividual variability in the efficiency of these networks which explains, at least

in part, the interindividual variations in attentional abilities, ie, attentional traits

(Petersen and Posner, 2012).

There are also a number of electrophysiological neural correlates, in particular

spectral variations in EEG signals that are related to change in attention levels. Re-

garding the alerting system, decreased vigilance levels are associated with a slowing

of EEG frequencies, ie, in an increased power for low frequency EEG rhythms (delta

 1–4 Hz, theta  4–7 Hz, low alpha  7–10 Hz), and a decreased power for higher

frequency EEG rhythms (Frey et al., 2014a,b; Roy, 2015). The amplitude of event-

related potentials such as the P300 or the parietal N100 also decreases with lower

vigilance. Concerning the orienting system, alpha activity ( 8–12 Hz) has also been

shown to be related to selective attention, with higher alpha power indicating lower

attention, and occipital alpha providing information on the location of spatial visual

attention (Frey et al., 2014a,b). A delta (3–8 Hz) over beta (16–24 Hz) power ratio

has also been used as a marker of sustained attention (Bamdadian et al., 2014).
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Finally, it seems that the Gamma (55–85 Hz) power in attentional networks related to

the executive control system also correlates with the attentional level (Grosse-

Wentrup et al., 2011).

Consistent with the cognitive literature stressing the impact of attention on

success in task-learning, the BCI community has also identified a number of neural

correlates of attention that are related to BCI performance. For instance, variation

in Gamma power, notably in executive control attentional brain networks, has

been found to be correlated to SMR-BCI performance and can be used to predict

successful or unsuccessful classification both for SMR-BCI (Grosse-Wentrup

and Sch€olkopf, 2012; Grosse-Wentrup et al., 2011) and for general MI-BCI

(Schumacher et al., 2015). Moreover, the extent of activation of the dorsolateral

prefrontal cortex (involved in executive control as seen earlier), was also found to

differ between SMR-BCI users with high performances and SMR-BCI users with

low performances (Halder et al., 2011). Finally, an EEG predictor based on frontal

Theta, occipital Alpha, and midline Beta power, which are all neural correlates of

sustained attention (thus involving the alerting system) as described previously,

has been shown to correlate with SMR-BCI performances (Bamdadian et al., 2014).

5 SPATIAL ABILITIES—DEFINITION AND NEURAL

CORRELATES

As already seen, many studies have highlighted the role of spatial abilities on BCI

performance variation across subjects. The general hypothesis is that low BCI per-

formers have less-developed abilities to generate or maintain mental images.

For example, Vuckovic and Osuagwu (2013) relate the results of kinesthetic and

visual–motor imagery questionnaires to performances obtained with a BCI based on

object-oriented motor imagery. They show that the kinesthetic score could be a rel-

evant predictor of performance for an SMR-BCI. Moreover, the physical presence of

the object of an action facilitates motor imagination in poor imagers. It is important

to note that the impact of imagery abilities on BCI performances might be mediated

by differences in brain activation. Guillot et al. (2008) attempted to identify the func-

tional neuroanatomical networks that dissociate able vs poor imagers. They used

functional magnetic resonance imaging (fMRI) to compare the pattern of cerebral

activations in able and poor imagers during both the physical execution and MI

of a sequence of finger movements. Results show that good imagers activated the

parietal and ventrolateral premotor regions to a greater degree, both having been

shown to play a critical role in the generation of mental images.

Another spatial skill that has been shown to be related to MI-BCI performance is

mental rotation ability. Mental rotation scores (measured using amental rotation test)

are a robust measure of spatial abilities, particularly for mental representation and

manipulation of objects (Borst et al., 2011; Poltrock and Brown, 1984). Mental ro-

tation scores have been shown to be correlated with scores obtained with other tests

of spatial abilities such as space relation tests or spatial working memory (Just and
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Carpenter, 1985; Kaufman, 2007), suggesting that they may be related to more gen-

eral spatial skills (Thompson et al., 2013). Jeunet et al. (2015a) have explored the

relationships betweenMI-BCI performance and the personality and cognitive profile

of the user. The main result is a strong correlation between MI-BCI performances

and mental rotation scores.

In the same vein, Randolph (2012) has shown that video game experience is

likely to enhance BCI performance. Many studies have noted a link between video

game experience and spatial abilities. For example, spatial abilities can be improved

through playing action video game (Dorval and Pepin, 1986; Subrahmanyam and

Greenfield, 1994). Feng et al. (2007) observe that performances in a mental rotation

test are enhanced after only 10 h of training with an action video game.More remark-

ably, these authors found that playing an action video game can decrease the well-

known gender disparity in mental rotation tasks (see also Ventura et al., 2013). All

these elements strongly suggest that the link between video game experience and

BCI performance could be mediated by spatial ability levels.

Moreover, Randolph (2012) showed that using hand and arm movements, or full-

body movements (such as playing sports or musical instruments) also favors BCI

performances. Many authors have also observed a link between spatial abilities

and motor processes (Hoyek et al., 2014). For example, Moreau et al. (2011) com-

pared elite and novice athletes and found a significant relationship between sports

performance, activity, sport-specific training, and mental rotation abilities. In the

Hoyek et al. (2014) study, the motor performance of 7- to 8-year-old and 11- to

12-year-old children was measured in a steeple chase and an equivalent straight dis-

tance sprint. Data revealed that the time taken to complete the chase was influenced

by speed and sex, but also by the individual mental rotation ability. These links be-

tween motor performances and spatial abilities are also attested by neuroimaging

studies, which provide evidence that motor areas are involved in mental rotation

(eg, Lamm et al., 2007). Thus, it can be assumed that the relationship between

BCI performance and motor processes are mediated by spatial ability levels.

Finally, Hammer et al. (2012) found that visual–motor coordination abilities con-

stitute a predictor of BCI efficiency, and Scordella et al. (2015) showed a relationship

between motor coordination and visual-spatial skills (measured by a visual-

constructive task). We can again assume that the link between visual–motor coordi-

nation and BCI efficiency is mediated by visual-spatial abilities.

5.1 SPATIAL ABILITIES—DEFINITION

As mentioned earlier, spatial abilities embody the ability to produce, transform, and

interpret mental images (Poltrock and Brown, 1984). Lohman (1993) greatly

highlighted the pivotal role of spatial abilities and particularly MI in all models of

human abilities. This author reports that high levels of spatial abilities have fre-

quently been linked to creativity in many domains (arts, but also science and math-

ematics) (see also Shepard, 1978). He also indicates that Albert Einstein, as well as

other well-known physicists (such as James Clerk Maxwell, Michael Faraday, and
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Herman von Helmholtz) and inventors, have been reported to have had high spatial

abilities, and that these abilities played an important role in their creativity. Further-

more, studies on developmental cognitive skills have consistently shown that spatial

aptitude and mathematical aptitude are closely related (Geary et al., 2000). More-

over, the importance of spatial ability in educational pursuits and in the professional

world was examined byWai et al. (2009), with particular attention devoted to STEM

(science, technology, engineering, and mathematics) domains. Participants (Grades

9–12, N¼400,000) were tracked for 11 years. Results showed that spatial abilities

were a significant predictor of achievement in STEM, even after taking into account

possible third variables such as mathematical and verbal skills (see also Humphreys

et al., 1993; Shea et al., 2001).

The key role ofMI in human cognition has also been highlighted by the fact that it

is involved in certain pathological situations such as Posttraumatic Stress Disorders

(Brewin et al., 1996), schizophrenia (Oertel-Kn€ochel et al., 2013), depression

(Rogers et al., 2002), social phobia (Clark and Wells, 1995), and bipolar disorder

(Holmes et al., 2008) (for a review, see Pearson et al., 2013). For example, impair-

ment in image generation or in mental rotation of letters has been shown in unipolar

major depression (Rogers et al., 2002).

Furthermore, the potential role of imagery for motor skill learning has been dem-

onstrated in many situations, such as learning new skills in sports (Murphy, 1994),

improving performance both in novice and expert surgeons (Cocks et al., 2014), and

in Paralympics athletes (Martin, 2012).

Today, it is common to distinguish between large scale and small-scale spatial

abilities (Hegarty et al., 2006). Large scale abilities refer to the notion of wayfinding

(or spatial navigation) defined as “the process of determining and following a path or

route between origin and destination” (Golledge, 1999). Wayfinding is assessed by

tasks such as search, exploration, route following, or route planning in contexts in-

cluding outdoor and urban environments, indoor spaces and virtual reality (VR) sim-

ulations (Wiener et al., 2009).

By contrast, small-scale spatial abilities are usually assessed by paper and pencil

tests, which involve perceptually examining, imagining, or mentally transforming

representations of small shapes or easy-to-handle objects (Hegarty et al., 2006).

These abilities also refer to the notion of MI consisting of several component pro-

cesses. For example, the classical model of Kosslyn (1980, 1994) proposes a distinc-

tion between four components, namely image generation (the ability to form mental

images), image maintenance (the ability to retain images over time), image scanning

(the ability to shift one’s attention over an imaged object), and image manipulation

(the ability to rotate or otherwise transform images) (see also Marusan et al., 2006).

5.2 SPATIAL ABILITIES—NEURAL CORRELATES

The neural correlates of visual MI are subject to much debate. Some authors claim a

functional equivalence between visual perception and visual MI, with the retinotopic

areas in the occipital lobe acting as common substrate (for a review, see Bartolomeo,
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2008). However, some brain lesion studies indicate that visual imagery is possible

without the involvement of primary visual areas (Chatterjee and Southwood,

1995). Nevertheless, the frontal eye fields and the superior parietal lobule seem to

play a crucial role in generating visual mental images (Mechelli et al., 2004). These

results have been confirmed by Zvyagintsev et al. (2013) showing that the visual net-

work comprises the fusiform gyrus bilaterally and a frontoparietal network involving

the superior parietal lobule and frontal eye field bilaterally.

Motor imagery is a particular case of MI defined as the mental simulation of a spe-

cific action without any corresponding motor output (Jeannerod, 1994). The neural

substrate that underlies motor imagery has also been subject to many debates.

Miller et al. (2010) measured cortical surface potentials in subjects during overt

action and imagery of the samemovement. They demonstrated the role of primarymo-

tor areas inmovement imagery and showed that imagery activated the same brain areas

as actual motor movement. In their study, the magnitude of imagery-induced cortical

activity was reduced compared to real movement, but this magnitude was largely

enhanced when subjects learned to use imagery to control a cursor in a feedback task.

It is important to note that a distinction has been made between two types of motor

imagery depending on the point of view adopted to imagine an action: the third

person perspective point-of-view consists in self-visualizing an action, whereas the

first person point of view perspective implies somesthetic sensations elicited by

the action. Some evidence suggested that visual (third person) and somesthetic/

kinesthetic (first person) motor imagery recruit distinct neural networks. Guillot

et al. (2004) showed that visual imagery predominantly activated the occipital regions

and the superior parietal lobules, whereas kinesthetic imagery preferentially activated

the motor-associated structures and the inferior parietal lobule. Finally, Ridderinkhof

and Brass (2015) specify that activation during kinesthetic MI is not just a subliminal

activation of the same brain areas involved in the real action. For these authors the

activation during kinesthetic imagery is similar to the activation associated with the

preparatory planning stages that eventually lead to the action (Jeannerod, 2006).

Interestingly enough, it has been shown that kinesthetic motor imagery leads to

better MI-BCI performances than visual–motor imagery (Neuper et al., 2005). Nev-

ertheless, the distinction between these different forms of MI, their neural correlates,

and their relationships with the neural circuits involved in motor processes remain to

be elucidated.

To conclude this section, spatial skills play a crucial role in human cognition as

they are involved in many activities including art, music, mathematics, engineering,

literature, etc. Jeunet et al. (2015a) demonstrated that spatial skills and particularly

mental rotation scores are a relevant predictor of BCI efficiency. Moreover, many

skills related to spatial abilities (such as playing sports, musical instruments, and

action video games) have been shown to be likely to improve BCI performance.

It is an attractive hypothesis to consider that imagery abilities could contribute to

explaining the “BCI illiteracy” phenomenon, but further investigations are needed

to make a more systematic study of the relationship between certain cognitive

and personality predictors, spatial abilities, and BCI efficiency.
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6 PERSPECTIVES: THE USER–TECHNOLOGY RELATIONSHIP,
ATTENTION, AND SPATIAL ABILITIES AS THREE LEVERS
TO IMPROVE MI-BCI USER-TRAINING

6.1 DEMONSTRATING THE IMPACT OF THE PROTOCOL ON CA
AND SENSE OF AGENCY

In Section 3, we stressed the impact of the notion of control on performance, notably

through its mediating role on CA. The notion of control can be conceptualized as a

Sense of Agency, ie, “the sense that I am the one who is causing or generating an

action” (Gallagher, 2000). Given the strong impact that the sense of agency has

on performance, it seems important to increase it as far as possible. Yet, in the con-

text of MI-BCI control, it is not straightforward. Indeed, the sense of agency is

mainly based on a bodily experience, whereas performing MI tasks does not pro-

vide the participant with any sensory feedback. Thus, here we would like to insist

on the importance of the feedback, especially during the primary training phases

of the user (Coyle et al., 2015; McFarland et al., 1998). Indeed, in the first stages,

the fact that the technology and the interaction paradigm (through MI tasks) are both

new for the users is likely to induce a pronounced CA associated with a low sense of

agency. Providing the users with a sensory feedback informing them about the

outcome of their “action” (MI task) seems necessary in order to trigger a certain

sense of agency at the beginning of their training. This sense of agency will in turn

unconsciously encourage users to persevere, increase their motivation, and thus pro-

mote the acquisition of MI-BCI related skills, which is likely to lead to better

performances (Achim and Al Kassim, 2015; Saad�e and Kira, 2009; Simsek,

2011). This process could underlie the (experimentally proven) efficiency of biased

feedback for MI-BCI user-training. Indeed, literature (Barbero and Grosse-Wentrup,

2010) reports that providing MI-BCI users with a biased (only positive) feedback is

associated with improved performances while they are novices. However that is no

longer the case once they have progressed to the level of expert users. This result

could be due to the fact that positive feedback provides users with an illusion of con-

trol which increases their motivation and will to succeed. As explained by Achim and

Al Kassim (2015), once users reach a higher level of performance, they also expe-

rience a high level of self-efficacy which leads them to consider failure no longer as

a threat (Kleih et al., 2013) but as a challenge. And facing these challenges leads to

improvement.

However, to be efficient, this feedback must follow certain principles (Vlek et al.,

2014). First, the priority principle, ie, the conscious intention to perform an act must

immediately precede the act: here, the feedback must appear after the users become

conscious they have to perform the act and have started to do it. Second, the consis-

tency principle, ie, the sensory outcome must fit the predicted outcome. And third,

the exclusivity principle, ie, one’s thoughts must be the only apparent cause of the

outcome. This last point suggests that the user should not think that another person is
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controlling the feedback. Thus, if the feedback is biased, it has to be subtle enough so

that the user is not aware of it. Otherwise, the user will not feel in control anymore.

The two latter principles could explain why biased feedback is efficient for novices

but not for experts. Indeed, experts develop the ability to generate a precise predicted

outcome that usually matches the actual outcome (when the feedback is not biased).

This explains why when the feedback is biased, and therefore the predicted and

actual outcomes do not match, expert users attribute the discrepancy to external

causes more easily. In other words, it can be hypothesized that experts might be dis-

turbed by a biased feedback because they can perceive that it does not truly reflect

their actions, thus decreasing their sense of being in control.

Furthermore, Beursken (2012) tested the impact of the concept of transparent

mapping in a pseudo-BCI experiment. A protocol is said to be transparent when

the task and the feedback are consistent. In the experiment, the sense of agency

of the participants was tested in two conditions: one transparent and one nontranspar-

ent. The participants had to imagine movements of their left and right hands. In the

transparent condition, a virtual left or right hand moved on the screen when left- or

right-hand imagination was recognized, respectively. In the nontransparent con-

dition however, the same tasks were associated with both hands making “thumbs-

up” or “okay” movements. Participants felt more in control in the transparent

condition and reported that less effort was required to understand the instructions

and remember the meaning of the feedback. Consequently, more resources were

available to perform the task. This result means that when designing the feedback,

researchers must be careful to propose a feedback that fits the mental task. Yet, in

standard training protocols such as Pfurtscheller and Neuper’s (2001), MI tasks

are associated with a bar extending in a specific direction. Although the direction

of the bar is consistent with the task when participants are asked to perform left-

and right-hand motor imagery, it is not particularly natural. In a recent study

(Jeunet et al., 2015b), we showed that an equivalent tactile feedback provided on

users’ hands was more efficient. With reference to the Ackerman model (1988),

when the outcome (the feedback) is consistent with the task, during the Phase #1

the “task-appropriate” abilities, here spatial abilities, decrease in influence and thus

the between-subject variability in terms of performance also decreases. However,

when the outcome is inconsistent with the task, the requirements for information pro-

cessing are important and the impact of the user-profile, here in terms of attentional

abilities and spatial abilities, remains constant (Neumann and Birbaumer, 2003)

which makes the between-subject variability due to these factors stable even in

advanced phases of the training.

To summarize, we can derive three guidelines for MI-BCI protocol design that

could enable users to experience a better sense of agency. First, providing the users,

especially novices, with a sensory feedback is essential as it will increase their po-

tential sense of agency. While positively biasing the feedback can improve novice

users’ sense of agency, motivation, and will to succeed, this is not the case for expert

users who can be disturbed by biased feedback. Second, in order to be efficient the
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feedback must follow the principles of priority, consistency, and exclusivity. And

finally, transparent protocols, ie, protocols in which the feedback fits with the MI

task, should be associated with better MI-BCI performance as (1) they induce a

greater sense of agency and (2) they require less workload to be processed and thus

grant more cognitive resources to be devoted to the task.

6.2 RAISING AND IMPROVING ATTENTION

As mentioned previously, attention is a major predictor of BCI performances, and

it has been shown that the better the users’ attentional abilities and the more atten-

tional resources they devote to BCI training, the better their BCI performances.

Therefore, BCI performances could be improved by designing BCI training pro-

tocols that (1) train users to increase their attentional abilities and (2) ensure the

attentional resources of users are directed toward and maintained on the BCI

training tasks.

A first suggestion to improve BCI training is to include attention-training tasks, to

improve users’ attentional abilities and thus their BCI performance. A number of

approaches may be used, but recently researchers have identified meditation and

neurofeedback as promising approaches for attention training (Brandmeyer and

Delorme, 2013). Indeed, it has been shown that meditation is actually a successful

form of attention training that improves the ability of practitioners to focus their

attentional resources on a given task, possibly for long periods of time, as well as

their ability to ignore distractors. Expert meditators have been found to show differ-

ent activation levels than nonmeditators in the frontoparietal and the default mode

networks, in fMRI studies (Braboszcz et al., 2010). The Gamma EEG power in these

areas also differs between expert meditators and nonmeditators (Lutz et al., 2008).

Such brain networks are notably involved in sustained attention. Interestingly

enough, these areas, and gamma activity originating from there, have both been

identified as being related to BCI performance (Grosse-Wentrup and Sch€olkopf,

2012; Halder et al., 2011). The promising usefulness of meditation practice for

BCI training is further supported by research from a number of groups who have

found that meditation increases SMR-BCI performances (eg, Eskandari and

Erfanian, 2008; He et al., 2015). In other words, meditation improves attentional

abilities, which in turn improves BCI performances.

Attentional capabilities can also be improved using neurofeedback training,

eg, by providing users with games in which they have to increase an EEG measure

of their attentional level to win (Lim et al., 2010, 2012). For instance, in Lim et al.

(2012), children with attention deficit hyperactivity disorder (ADHD) were asked to

play a game in which the speed of the character they were controlling was directly

proportional to their attentional level, as measured by EEG. Thus, they had to focus

as much attention as possible on the game in order to move fast enough to complete it

in the allotted time. This was shown to be a successful form of attention training,

which reduced the children’s ADHD symptoms (Lim et al., 2010, 2012). Gamma

neurofeedback was also shown to be useful in improving visual attention abilities
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(Zander et al., 2013). To the best of our knowledge, such neurofeedback training of

attentional capabilities has not been explored with the aim of MI-BCI control

abilities, and thus could be a promising direction to investigate.

A second suggestion to improve BCI training is to design BCI training tasks,

feedbacks, and environments that capture and maintain the attention of the user

on the BCI training. In the ARCS model for instructional design, Keller suggests

a number of approaches to get and maintain users’ attention (Keller, 1987). In

particular, this includes ensuring the active participation of the learners, adding

game-like training, having a variety of supports, training materials and tasks, ensur-

ing concrete training tasks, and feedbacks as well as encouraging inquiry and curi-

osity from the learners (Keller, 1987). In practice, for MI-BCI, this could be achieved

by having BCI users control video games or VR applications with their BCI, hence

ensuring game-like training, active user participation, and concrete training tasks.

The fact that VR and game-based BCI training were actually shown to improve

BCI performances (Lotte et al., 2013b) further supports this suggestion. Moreover,

rather than using the same standard training protocol continuously and repeatedly,

variety in training can be obtained by adding other training tasks, with different ob-

jectives. For instance, users can be asked to practice each MI task separately, or to

perform a given MI task as fast as possible as in Ramsey et al. (2009) for instance.

Finally, to encourage enquiry and add concreteness to the training, BCI users could

be provided with richer and more motivating visualization and feedbacks that enable

them to see the impact of a given MI task on their EEG signals in real time, thus

motivating them to explore different strategies. This could be achieved using re-

cently proposed EEG visualization techniques such as Teegi (Frey et al.,

2014a,b). With this approach, users can see their own brain activity and EEG features

in real time, displayed in a user-friendly way on the head of a physical puppet they

can manipulate.

Other considerations could be taken into account to ensure users assign an

appropriate amount of attentional resources to the BCI training. For instance, the

training protocol should avoid requiring split attention, ie, requiring users to divide

their attentional resources between two different subtasks, especially if these

tasks involve the same modality, eg, two visual processing tasks. This would indeed

deplete the user’s cognitive resources and lead to poorer performances and lower

learning efficiency for any training task (Sweller et al., 1998). This is a relevant

point to consider as BCI feedback is often provided on the visual modality, while

the controlled BCI application generally also requires visual processing, eg, to

control a game or a visual speller. Interestingly enough, it has been shown that

providing tactile instead of visual feedback in such a split-attentional task leads to

improved BCI performance (Jeunet et al., 2015b). Thus, it would be worth studying

as well auditory feedback, see, eg, (McCreadie et al., 2014), in similar contexts.

Finally, since it is possible to measure users’ attentional level from EEG signals,

this could be used in real time to detect whether they are paying enough attention,

and warn them to refocus their attention, if necessary, as suggested in Schumacher

et al. (2015).
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6.3 INCREASING SPATIAL ABILITIES

If it appears that the training of spatial abilities could improve BCI performance, it is

necessary to review the studies that have tried to better understand the effects of

training on spatial skills.

For instance, it is well known that men perform better than women in spatial per-

ception and mental rotation tests (see for example, Linn and Petersen’s, 1985). In a

meta-analysis, Baenninger and Newcombe (1989) found that improvements in men

and women remain parallel in response to practice and training, so that gender dif-

ferences remain constant. However, other studies have shown greater performance

improvement in women than in men (Okagaki and Frensch, 1994), or a waning of

gender differences (Kass et al., 1998).

In a meta-analysis of training studies, Uttal et al. (2013) indicated that spatial

skills are highly malleable and that training in spatial thinking is effective, durable,

and transferable (to skills that have not been subject to specific training). The authors

outline that many studies in which transfer effects were present administered large

numbers of trials during training, which allowed to conclude that such a transfer is

possible if sufficient training or experience is provided. The meta-analysis did not

show a significant effect of age or a significant effect of the type of training on

the degree of improvement. Finally, the initial level of spatial skills affected the de-

gree of malleability. Participants who started at lower levels of performance im-

proved more in response to training than those who started at higher levels (Uttal

et al., 2013).

Terlecki et al. (2008) confirmed the impact of long-term practice or repeated test-

ing, and training capacity to improve mental rotation performances. However, nei-

ther mental rotation practice nor video game training reduced gender differences. It is

also important to note that these effects can last over several months and the effects of

video game experience are transferable to tasks that have not been trained for.

All these results are extremely interesting as they show that training and practice

can improve spatial skills. Mental training has been used to improve performances in

many domains such as sports, surgical performances, and music. However, very few

studies have focused on BCI practice.

Erfanian and Mahmoudi (2013) have investigated the role of mental practice and

concentration on a natural EEG-based BCI for hand grasp control. The imagery task

used was the imagination of hand grasping and opening. For imagery training, the

authors used a video-based method where subjects watched themselves performing

hand-closing and -opening while undertaking imagery. The results showed that men-

tal and concentration practice increased the classification accuracy of the EEG pat-

terns. Moreover, mental practice more specifically affected the motor areas. This

study shows very promising results on the way spatial training could improve

BCI performances.

In the study of Jeunet et al. (2015a), participants followed a standard training pro-

tocol composed of six identical sessions during which they had to learn to perform

three MI tasks: mental rotation, mental subtraction, and left-hand motor imagery. On
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the one hand, no improvement in performance was noticed between the 1st and 6th

session on average, suggesting that participants did not learn despite the large num-

ber of sessions. On the other hand, the BCI performance appeared to be strongly cor-

related to participants’ mental rotation scores. In the near future, the authors propose

to test the impact of spatial training and particularly mental rotation training on BCI

efficiency. The authors also considered applications in the context of patients suffer-

ing frommotor impairments, sinceMI abilities can be preserved after brain injury. In

any case, it is a challenging project to study the impact of spatial training on reducing

the “BCI illiteracy” phenomenon, and thus enabling BCI to be more systematically

used outside laboratories.

7 CONCLUSION
In this chapter, we performed a literature survey in order to identify the psychological

and cognitive factors related to MI-BCI performance. This survey enabled us to clas-

sify most of the predictors into three categories representing higher-level cognitive

concepts: (1) the user–technology relationship (comprising the notions of anxiety

and control during the interaction), (2) attention, and (3) spatial abilities. These three

categories appear to be extremely relevant in the context of MI-BCI training. Indeed,

the predictors were computed during the early stages of training, ie, during the first or

first few sessions. Moreover, most studies were performed on BCI-naı̈ve users who

were confronted with a BCI for the first time. Yet, the literature suggests that this

situation (early training phase and first exposition to the technology) can induce

an important level of anxiety associated to a low sense of agency, both having po-

tential negative repercussions on performance (Achim and Al Kassim, 2015; Saad�e

and Kira, 2009; Simsek, 2011). This first point justifies the involvement of the cat-

egory 1 predictors, ie, those related to the users’ relationship with the technology.

Besides, the Ackerman model (Ackerman, 1988) suggests that during the early

stages of learning (phase #1), the interuser variability in terms of performance in

mainly due to (1) differences in “task-appropriate” abilities and (2) high-level cog-

nitive abilities such as attention. These two aspects correspond to the two other pre-

dictor categories that we identified. Indeed, spatial abilities (category 3), ie, the

ability to produce, transform, and interpret mental images (Poltrock and Brown,

1984) can be considered as “task-appropriate” abilities in the context of MI-BCI

training, while attention (category 2) clearly corresponds to the second parameter

influencing interuser variability in Ackerman’s model. Hence the elaboration of

these three categories: the inclusion of the predictors in different categories was jus-

tified, the associated cognitive models were introduced, and the neural correlates re-

lated to each concept were described. This work was intended to provide a better

understanding of the different factors impactingMI-BCI training and thus to provide,

in the prospects section, a discussion about how these factors could be taken into

account when designing future protocols in order to optimize user-training. More
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specifically, the impact of the training protocol on users’ CA and sense of agency was

demonstrated. It has been suggested that a biased positive feedback could increase

novice users’ sense of agency and thus increase their performance. Also, the signif-

icance of respecting the principles of priority, consistency, exclusivity, and a trans-

parent mapping between the task and the feedback was emphasized. Furthermore, it

should also be possible to increase BCI training efficiency by considering the user’s

attention. In particular, attention capabilities can be improved using meditation or

neurofeedback. Moreover, attentional resources can be optimally directed toward

BCI training by using gamified BCI training tasks, varied tasks, rich and friendly

feedback, as well as multimodal feedbacks. BCI efficiency could also be improved

by using training procedures of spatial skills, since spatial training has proved to

enhance performances in many domains (sport, music, surgical practice, etc.). More-

over, this improvement has been shown to be effective, durable, and transferable

(to skills that have not been subject to specific training) when the training duration

is long enough. Finally, the user’s mental rotation ability seems to be a very good

candidate to be trained, since this ability has been identified as a relevant predictor

of BCI performance and since the consequences of mental rotation training on spatial

and more general skills have been clearly identified.

To conclude, we hope that this work will be useful to guide the design of new

protocols and improveMI-BCI user-training so that these technologies becomemore

accessible to their end-users. Nevertheless, it is important to note that improving

training protocols is not enough. The roles of the researcher and experimenter are

also of utmost importance, notably concerning: (1) the demystification of the BCI

technology to reduce a priori CA, through scientific mediation and communication

with the media; (2) the writing of informed-consent forms and explanations, which

should be clear and informative, and provide an objective estimation of the benefit on

risk balance and enable to regulate any form of hope that may be generated (Nijboer

et al., 2013); and (3) the social presence and trust relationship with the user, which

are essential in facilitating the learning process (Kleih et al., 2013).
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Abstract
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send com-

mands to a computer using their brain-activity alone (typically measured by ElectroEnceph-

aloGraphy—EEG), which is processed while they perform specific mental tasks. While very

promising, MI-BCIs remain barely used outside laboratories because of the difficulty

encountered by users to control them. Indeed, although some users obtain good control

performances after training, a substantial proportion remains unable to reliably control an

MI-BCI. This huge variability in user-performance led the community to look for predictors of

MI-BCI control ability. However, these predictors were only explored for motor-imagery

based BCIs, and mostly for a single training session per subject. In this study, 18 partici-

pants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2

of which were non-motor tasks, across 6 training sessions, on 6 different days. Relation-

ships between the participants’ BCI control performances and their personality, cognitive

profile and neurophysiological markers were explored. While no relevant relationships with

neurophysiological markers were found, strong correlations between MI-BCI performances

and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive

model of MI-BCI performance based on psychometric questionnaire scores was proposed.

A leave-one-subject-out cross validation process revealed the stability and reliability of this

model: it enabled to predict participants’ performance with a mean error of less than 3

points. This study determined how users’ profiles impact their MI-BCI control ability and

thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of

each user.

Introduction
A brain computer interface (BCI) is a hardware and software communication system that
enables humans to interact with their surroundings without the involvement of peripheral
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nerves and muscles, i.e., by using control signals generated from electroencephalographic
(EEG) activity [1]. More specifically, this paper focuses on BCIs for which these control signals
are sent via the execution ofmental tasks: so-called Mental-Imagery based BCIs (MI-BCIs).
MI-BCIs represent a new, non-muscular channel for relaying users’ intentions to external
devices such as computers, assistive appliances, or neural prostheses (for a review, see [2]).

Since the 1990’s, many different kinds of MI-BCI have been developped [3]. Mostly, MI-B-
CIs have been designed for the purpose of improving living standards of severely motor-
impaired patients (e.g. those with locked-in syndrome or spinal cord injuries) by enhancing
their mobility autonomy and communication possibilities [1, 4, 5]. In addition to these applica-
tions, one should also note the emerging fields of BCI-based rehabilitation, e.g., for stroke reha-
bilitation [6, 7], and multimedia and virtual reality [8–10] for which MI-BCIs—notably those
based on motor imagery—bring innovative perspectives.

Unfortunately, most of these promising technologies based on MI-BCIs cannot yet be
offered on the public market since a notable portion of users, estimated at between 15 and 30%,
does not seem to be able to control an MI-BCI based system [11]: this phenomenon is often
called “BCI illiteracy” or “BCI deficiency”. Even for MI-BCI users who are not “illiterate”, the
average performance they reach is most of the time rather low [12, 13], i.e., around 75% of clas-
sification accuracy for 2 class MI-BCIs. Nonetheless, it is important to note that around 20% of
users obtain performances between 80% and 100% of classification accuracy [14] after training
for two mental tasks.

It is now known that the control of an MI-BCI requires the aquisition of specific skills, and
particularly the ability to generate stable and distinct brain activity patterns while performing
the different Mental-Imagery (MI) tasks [1, 15]. Appropriate training is required to acquire
these skills [15]. Yet, Lotte et al. [16] suggested that current strandard training protocols, which
do not take into account the recommendations from psychology (such as proposing adaptive
and progressive tasks or explanatory, supportive and multimodal feedback), are not appropri-
ate, and thus might be partly responsible for BCI illiteracy and poor user performance. This
hypothesis was strengthened in a recent study [17] in which a standard MI-BCI protocol [4]
was tested in a BCI-free context: participants were asked to learn to do simple motor tasks
(draw circles and triangles with a pen on a graphic tablet) using this standard MI-BCI training
protocol. As would have been the case with MI tasks, participants had to find the right strategy
(e.g., finding the right size and drawing speed) so that the motor task they were performing
(i.e., drawing circles or triangles) was recognised by the system. Results showed that 15% of the
participants did not manage to learn to perform these simple motor tasks (i.e. they did not find
out how to adapt their strategy) using the standard training protocol, which is close to BCI-illit-
eracy rates. This result reinforced the idea that current standard MI-BCI protocols are not suit-
able for skill-learning, and emphasised the importance of working on improving them.

However, the fact that training protocols are not adapted does not explain the huge
between-subject variability. Thus, this variability in MI-BCI control performance over subjects
has raised questions about which parameters could help to predict users’ ability to control such
a system. The training process to learn to control an MI-BCI being time- and resource-con-
suming, being able to predict users’ success (or failure) could avoid important loss of time and
energy for both users and experimenters. From another perspective, knowing these predictors
could also help understand why some people cannot learn to control an MI-BCI using standard
protocols, and then guide the design of new training protocols that would be adapted to users’
relevant characteristics. So far, two kinds of predictors have been explored: neurophysiological
and psychological predictors. A brief state of the art of these predictors is proposed in the fol-
lowing paragraphs.

Predicting Mental-Imagery Based BCI Performance from Users’ Profiles
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Neurophysiological Predictors: Recently, evidence was presented that the amplitude of sen-
sorimotor-rhythms (SMRs) at rest is a good predictor of subsequent BCI-performance in
motor-imagery paradigms [13]. The authors proposed a new neurophysiological predictor
based on the μ (about 9–14 Hz) rhythm over sensorimotor areas: referred to as “Blankertz’s
SMR predictor” in this paper. This predictor was determined from a two minute-long record-
ing in a “relax with eyes open” condition, using two Laplacian EEG channels. Results showed a
correlation of r = 0.53 between the proposed predictor and BCI performance on a large subject
data base (N = 80) which makes this neurophysiological predictor the most reliable so far.
Moreover, Grosse-Wentrup et al. [18] demonstrated that the modulation of SMRs, induced by
motor-imagery of either the left- or right-hand, was positively correlated with the power of
frontal and occipital γ-oscillations, and negatively correlated with the power of centro-parietal
γ-oscillations. Besides, Grosse-Wentrup and Schölkopf [19] showed that the power of high-fre-
quency γ-oscillations originating in fronto-parietal networks predicted variations in perfor-
mance on a trial-to-trial basis. As γ-oscillations are often associated with shifts in attention
[19], the authors interpreted this finding as empirical support for an influence of attentional
networks on BCI performance via the modulation of SMRs [19]. Furthermore, Ahn et al. [20]
investigated the difference between BCI-literate and BCI-illiterate groups in terms of spectral
band powers by comparing non-task related state (NTS) during the eyes-open state, resting but
ready state (before motor imagery) and during motor imagery. They found that the BCI-illiter-
ate group showed high θ- and low α-power levels in comparison with the BCI-literate group.
Statistically significant areas were frontal and posterior-parietal regions for the θ-band and the
whole cortex area for the α-band. A high positive correlation between γ-activity and motor-
imagery performance was also shown by [21] in the prefrontal area. Finally, [22] proposed a
novel predictor computed from the spectral power of pre-cue EEG data for specific rhythms
over different regions of the brain. The authors argue that this predictor reflects the attentional
level. Results showed that there is a significant correlation (r = 0.53) between the predictor and
the cross-validation accuracies of subjects performing motor-imagery. They also found that
having higher frontal θ and lower posterior α prior to performing motor-imagery, which
reflects a high attentional level, may enhance the BCI classification performance. This last
result seems to be in contradiction with [20]. However, the brain areas considered in these two
studies are different. Ahn et al. [20] used sensori-motor areas while Bamdadian et al. [22] con-
sidered frontal theta and lower posterior alpha. Furthermore, the statistical analyses used by
the authors in [20] have recently been criticised in [23]: the discrepancies in the analyses could
also explain this contradiction. While the search for neurophysiological predictors seems to be
a promising approach, some studies showed that the user’s psychological profile could also be
an important factor influencing BCI-control performance.

Psychological Predictors: Memory span and attention were correlated to the ability to regu-
late slow cortical potentials (SCP) in patients with epilepsy [24]. Besides, Neumann and Bir-
baumer [25] found that mood together with certain predictors which were neither
psychological nor neurophysiological, such as quality of caregiving, headache, sleep, and even
room temperature were related to BCI performance in some patients. Nijboer et al. [26] corre-
lated mood and motivation with SMR-BCI performance. The authors showed that higher
scores of mood and mastery confidence were related to better SMR regulation abilities, whereas
higher rates of fear of incompetence were correlated to lower SMR regulation abilities. Further-
more, [27] obtained a positive correlation between a Locus of control score related to dealing
with technology and the accuracy of BCI control. Fear of the BCI system was also shown to
affect performance [27–29]. Finally, Hammer et al. [30] showed that the psychological parame-
ters they investigated (attention span, personality and motivation) play only a moderate role in
one-session SMR-BCI control performance. However, their findings support the validity of the
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“Blankertz’s SMR predictor” [13] mentioned earlier (μ peak during relaxation) and they pro-
posed a model for predicting SMR-BCI performance—including visuo-motor coordination
(assessed with the Two-Hand Coordination Test) and the degree of concentration (assessed
with the Attitudes Towards Work)—that reached significance. In a recent study, Hammer
et al. [14] tested this model in a 4 session experiment (one calibration and three training ses-
sions) within a neurofeedback based SMR-BCI context (i.e., involving no machine learning).
Their results showed that these parameters explained almost 20% of the SMR-BCI perfor-
mance in a linear regression. However, the first predictor, i.e., visuo-motor coordination, failed
significance. With this model, the average prediction error was less than 10%.

To summarise, all the studies concerning BCI-performance predictors considered either
Band Power values for SMR-BCIs, or Slow Cortical Potentials (SCP). As stated by [18], “it
remains to be seen if similar results can be obtained for BCI systems not [only] based on motor
paradigms”. Furthermore, most of the previous studies were based on a few runs, most of the
time recorded during a one-session experiment. Yet, except for SCP-BCI [25], it has not been
shown that first session performance was representative of long-term MI-BCI control perfor-
mance. Indeed, first session performance can differ greatly from subsequent sessions due to
several factors: (1) the fact that the classifier is trained during the first session, (2) the fact that
the cap position can change, (3) the EEG-signal non-stationnarity or (4) the novelty effect.
Finally, there is only one study, by Hammer et al. [30], in which psychological factors were
combined with a neurophysiological predictor [13] to determine a predictive-model of motor-
imagery based BCI performance.

The main contribution of this paper is to propose a predictive model of MI-BCI control per-
formance, which was designed considering the possibility of combining several psychological
and neurophysiological factors. Indeed, participants were asked to learn to perform three MI
tasks, namely one motor-imagery task, i.e., left-hand movement imagination, and two non
motor tasks, i.e., mental rotation and mental subtraction. Their average performance over the
six sessions they attended was then set as the variable to explain in a step-wise linear regression.
The scores obtained at the different psychometric tests as well as neurophysiological predictors
were used as explanative factors.

Materials and Methods

Participants
18 BCI-naive participants (9 females; aged 21.5 ± 1.2) took part in this study, which was con-
ducted in accordance with the relevant guidelines for ethical research according to the Declara-
tion of Helsinki. This study was also approved by the legal authorities of Inria Bordeaux Sud-
Ouest (the COERLE, approval number: 2015–004) as it satisfied the ethical rules and principles
of the institute. All the participants signed an informed consent form at the beginning of the
experiment and received a compensation of 100 euros at the end. Furthermore, in the aim of
avoiding confounding factors, age [21.5 ± 1.2 year old] and educational level [14.5 ± 1.8 years
of education] were controlled, which means that the ranges of these variables were low: partici-
pants were in the [20;25] year old interval and were studying at the University, for a Bachelor
or Master degree. All of the participants were healthy and right handed (Harris lateralisation
test [31]).

Variables and Factors
The aim of this study was to evaluate the impact of different psychological and neurophysiolog-
ical parameters on MI-BCI performance in healthy participants in order to propose a model
that could predict MI-BCI performances. Thus, the effect of the scores obtained at different
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neuropsychological questionnaires and of the values of neurophysiological markers on the var-
iable “MI-BCI classification performance” was evaluated.

Experimental Paradigm
Each participant took part in 6 sessions, on 6 different days spread out over several weeks. Each
session lasted around 2 hours and was organised as follows: (1) completion of psychometric
questionnaires, which are described in the next section (around 30 min), (2) installation of the
EEG cap (around 20 min), (3) five 7-minute runs during which participants had to learn to
perform three MI-tasks (around 60 min, including breaks between the runs) and (4) uninstalla-
tion and debriefing (around 10 min). The MI-tasks (i.e., left-hand motor imagery, mental rota-
tion and mental subtraction) were chosen according to Friedrich et al. [32], who showed that
these tasks were associated with the best performance. “Left-hand motor imagery” (L-HAND)
refers to the kinesthetic continuous imagination of a left-hand movement, chosen by the par-
ticipant, without any actual movement [32]. “Mental rotation” (ROTATION) and “mental sub-
traction” (SUBTRACTION) correspond respectively to the mental visualisation of a 3
Dimensional shape rotating in a 3 Dimensional space [32] and to successive subtractions of a
3-digit number by a 2-digit number (ranging between 11 and 19), both being randomly gener-
ated and displayed on a screen [32].

During each run, participants had to perform 45 trials (15 trials per task x 3 MI-tasks, pre-
sented in a random order), each trial lasting 8s (see Fig 1). At t = 0s, an arrow was displayed
with a left hand pictogram on its left (L-HAND task), the subtraction to be performed on top
(SUBTRACTION task) and a 3D shape on its right (ROTATION task). At t = 2s, a “beep”
announced the coming instruction and one second later, at t = 3s, a red arrow was displayed
for 1.250s. The direction of the arrow informed the participant which task to perform, e.g., an
arrow pointing to the left meant the user had to perform a L-HAND task. In order to stress this
information, the pictogram representing the task to perform was also framed with a white
square until the end of the trial. Finally, at t = 4.250s, a visual feedback was provided in the
shape of a blue bar, the length of which varied according to the classifier output. Only positive
feedback was displayed, i.e., the feedback was provided only when there was a match between
the instruction and the recognised task. The feedback lasted 4s and was updated at 16Hz, using
a 1s sliding window. During the first run of the first session (i.e., the calibration run, see next
Section), as the classifier was not yet trained to recognise the mental tasks being performed by
the user, it could not provide a consistent feedback. In order to limit biases with the other runs,
e.g., EEG changes due to different visual processing between runs, the user was provided with
an equivalent sham feedback, i.e., a blue bar randomly appearing and varying in length, and
not updated according to the classifier output as in [32]. A gap lasting between 1.500s and

Fig 1. Timing of the protocol.

doi:10.1371/journal.pone.0143962.g001
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3.500s separated each trial. At the end of the 5 runs, participants were asked to rate their
arousal on the Self-Assessment Manikin scale [33] and to rate their invested mental effort on
the Rating Scale Mental Effort [34].

EEG Recordings & Signal Processing
The EEG signals were recorded from a g.USBamp amplifier (g.tec, Graz, Austria), using 30
scalp electrodes (F3, Fz, F4, FT7,FC5, FC3, FCz, FC4, FC6, FT8, C5, C3, C1, Cz, C2, C4, C6,
CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO7, PO8, 10–20 system) [32], referenced to the left
ear and grounded to AFz. EEG data were sampled at 256 Hz.

In order to classify the 3 mental imagery tasks on which our BCI is based, the following
EEG signal processing pipeline was used. First, EEG signals were band-pass filtered in 8–30Hz,
using a Butterworth filter of order 4. Then EEG signals were spatially filtered using 3 sets of
Common Spatial Pattern (CSP) filters [35]. The CSP algorithm aims at finding spatial filters
whose resulting EEG band power is maximally different between two classes. Each set of CSP
filters was optimised on the calibration run of each user (i.e., the first run of the first session) to
discriminate EEG signals for a given class from those for the other two classes. We optimised 2
pairs of spatial filters for each class, corresponding to the 2 largest and lowest eigen values of
the CSP optimisation problem for that class, thus leading to 12 CSP filters. The band power of
the spatially filtered EEG signals was then computed by squaring the signals, averaging them
over the last 1 second time window (with 15/16s overlap between consecutive time windows)
and log-transformed. These resulted in 12 band-power features that were fed to a multi-class
shrinkage Linear Discriminant Analysis (sLDA) [36], built by combining three sLDA in a one-
versus-the-rest scheme. As for the CSP filters, the sLDA were optimised on the EEG signals col-
lected during the calibration run, i.e., during the first run of the first session. The resulting clas-
sifier was then used online to differentiate between left-hand motor imagery, mental rotation
and mental subtraction during the 6 user-training sessions. The sLDA classifier output (i.e., the
distance of the feature vector from the LDA separating hyperplane) for the mental imagery
task to be performed was used as feedback provided to the user. In particular, if the required
mental task was performed correctly (i.e., correctly classified), a blue bar with a length propor-
tional to the LDA output and extending towards the required task picture was displayed on
screen and updated continuously. If the required mental task was not correctly classified, no
feedback was provided, i.e., we provided positive feedback only, as in the study of Friedrich
et al. [32]. To reduce between session variability, the LDA classifiers’ biases were re-calculated
after the first run of the sessions 2 to 6, based on the data from this first run, as in [32]. EEG sig-
nals were recorded, processed and visually inspected with OpenViBE [37].

Personality and Cognitive Profile Assessment using Psychometric
Questionnaires
At the beginning of each of the 6 sessions, participants were asked to complete different vali-
dated psychometric questionnaires, to assess different aspects of their personality and cognitive
profile, that have been related to learning in the literature. During the first session all the partic-
ipants completed the same questionnaires: the information form, theHarris Lateralisation test
and the State Trait Anxiety Inventory. During the other sessions (2 to 6) the administration
order of the remaining questionnaires was counterbalanced for all the participants, in the aim
of avoiding order effects. Thus, we ensured that the administration time of the tests did not
exceed 45min per session: it lasted 30min on average. The following questionnaires were used:
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• 6 subscales of theWechsler Adult Intelligence Scale (WAIS-IV) [38], assessing the four IQ
dimensions: similarities & vocabulary (measuring verbal comprehension abilities), digit span
(measuring verbal working memory abilities), matrix reasoning (measuring perceptive rea-
soning abilities), coding & symbol search (measuring speed of processing abilities).

• the Corsi Block task [39] focuses on visuo-spatial short term and working memory abilities.

• the Revised Visual retention test [40] quantifies visual retention abilities as well as perceptive
organisation.

• the Learning Style Inventory (LSI) [41] enables to identify the students’ preferred learning
styles according to four dimensions: visual/verbal, active/reflective, sensitive/intuitive and
sequential/global.

• the 16 Personality Factors—5 (16 PF-5) [42] measures sixteen primary factors of personality
(warmth, reasoning, emotional stability, dominance, liveliness, rule-consciousness, social
boldness, sensitivity, vigilance, abstractness, privateness, apprehension, openness to change,
self-reliance, perfectionism and tension) as well as five global factors of personality (extraver-
sion, anxiety/neuroticism, tough mindedness, indepedence and self control).

• the Internal, Powerful others and Chance scale (IPC) [43] is a multi-dimensional locus of con-
trol assessment.

• the State Trait Anxiety Inventory (STAI) [44] is composed of two subscales, STAI Y-A and
STAI Y-B, which respectively measure anxiety as a state and anxiety as a trait. Thus, partici-
pants were asked to complete STAI Y-B at the first session only, while they were asked to
complete the STAI Y-A at the beginning of each session.

• the Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) [45] evaluates motor abilities;
based on Hammer et al. [30]. We considered only some subtests evaluating bilateral and
upper limb coordination as well as fine motor skills.

• theMental Rotation test [46] measures spatial abilities.

• the Arithmetic test [38] is one of the WAIS-IV sub scales, measuring working memory abili-
ties and more specifically the ability to concentrate while manipulating mental mathematical
problems.

Neurophysiological Predictors of BCI Performance
Different neurophysiological patterns were explored. These patterns have been proposed in the
literature as being predictors of motor imagery based BCI performance. They are introduced
below:

• α-power [8–13Hz] over each electrode, measured pre-trial (2500ms to 500ms before the
instruction) and in-trial (500ms to 3500ms after the feedback start). Low α-power in fronto-
parietal networks has been shown to be associated to a high attentional level [22, 47].

• β-power [16–24Hz] over each electrode, measured pre-trial and in-trial. In the paper of Ahn
et al. [20], it is stated that “BCI-illiterates” have low β-power.

• θ-power [3–8Hz] over each electrode, measured pre-trial and in-trial. Low θ-power was
related to internalised attention in [48]. High θ-power has also been shown to be related
to cognitive, and more specifically to memory performance, when combined with high
α power [47].
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• γ-power over each electrode, measured pre-trial and in-trial. High pre-trial fronto-parietal γ-
power has been associated with attentional processes [19]. Also, the ability to modulate SMR
has been shown to be negatively correlated to γ power in occipital areas [18]. It has to be
noted that muscular activity can represent a confounding factor as it is also correlated with γ
power [18].

• the predictor proposed by Bambadian et al. [22] was calculated on pre-trial (2500ms to
500ms before the instruction). It is claimed to reflect the participant’s attentional level as the
latest is, according to the literature, positively correlated to the θ-power and negatively corre-
lated to both the α and β-power:

F ¼
P

c2CyP
y
cP

c2CaP
a
c þ

P
c2CbP

b
c

with Cθ = [F3, Fz, F4], Cα = [P7, P3, PZ, P4, P8] and Cβ = [CZ, CpZ].

• the predictor proposed by Ahn et al. [20] was computed on electrodes C3 and C4 on the data
of each trial (500ms to 3500ms after the feedback start):

F ¼ w1aþ w2b
w3yþ w4g

with all the wi = 1.

• the Blankertz’s SMR-predictor [13] certainly is the most reliable (correlation of r = 0.53 with
SMR performance over a large dataset, N = 80). It is computed from a 2 min baseline in a
“rest with eyes open” state using two Laplacians over the motor cortex, i.e., C3 and C4. This
predictor allows to quantify the potential for desynchronisation of the SMRs at rest, which
can be used as an indicator of SMR strength during the performance of motor-imagery tasks.
As no 2 min baseline had been recorded with our protocol, we used all the 3 sec. pre-trial
time windows of the run (3000ms before the instruction) and computed the predictor on this
sequence. More precisely, we computed the power spectrum of each 2 sec time window, aver-
aged these spectrums (i.e., over time windows), and computed the predictor on this average
spectrum.

All these neurophysiological predictors except the Blankertz SMR-predictor were computed
for each trial, then averaged over all trials, runs and sessions for each subject. The Blankertz
SMR-predictor was computed for each run and then averaged over all runs and sessions for
each subject. The relationship between these predictor values and MI-BCI performance was
then investigated.

Analyses
During each of the 6 sessions, participants performed 5 runs. However, as the classifier was
updated after the first run of each session, we only used the 4 last runs (of each session) for the
analyses. Thus, we considered 360 trials (15 trials x 4 runs x 6 sessions) per mental task, i.e.
1080 trials (360 x 3 MI-tasks) for each of the 18 participants. EEG data were analysed using
Matlab (http://www.mathworks.com/) in order to compute the different neurophysiological
patterns that could predict MI-BCI performance according to the literature. Then, these fea-
tures as well as the psychometric-test results were analysed using SPSS (http://www-01.ibm.
com/software/analytics/spss/) in order to find a relevant model of MI-BCI performance predic-
tors. In particular, correlation analyses and (step-wise) linear regressions were computed as
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descriptive analyses. Then, leave-one-subject-out cross-validation tests were performed in
order to evaluate the predictive power and the stability of the models.

Results

Mental-Imagery Task Performance
Eighteen participants took part in this experiment. The data of one outlier participant were
rejected since, with a mean performance of 67.21%, he outperformed (by more than two SDs)
the group’s mean performance over the six sessions (�Xgroup = 52.50%; SD = 5.62). Thus, the fol-

lowing analyses were based on the data of 17 subjects.
Over the six sessions, participants achieved a mean performance of �X = 51.63% (SD = 4.39;

range: [43.04, 60.14]). All the participants obtained performances higher than chance level, this
chance level being estimated to be 37.7% of correct classification accuracy for three classes and
more than 160 trials per class and α = 5% [49]. In the first session, mean performance was �X =
51.72% (SD = 8.14), in the second �X = 51.18% (SD = 6.96), in the third, �X = 53.06%
(SD = 6.04), in the fourth �X = 51.57% (SD = 5.64), in the fifth �X = 51.78% (SD = 6.97) and in
the sixth session �X = 50.49% (SD = 6.25). The one-way ANOVA with the session number as the
intra-subject factor revealed no learning effect [F5,96 = 0.270, p = 0.928], as was generally
observed for 6 sessions of training in [50]. Moreover, no gender effect [t15 = -1.733, p = 0.104]
was noticed.

Correlations between performance and neurophysiological predictors
Bivariate Pearson correlation analyses between MI-BCI performance and different neurophysi-
ological patterns (i.e., α-power, β-power, θ-power, γ-power, Bamdadian, Ahn and Blankertz
predictors) were performed. First, results showed no correlations between MI-BCI perfor-
mance and the Bamdadian predictor, the Ahn predictor and the γ-power. Second, a tendency
towards correlation was found between BCI performance and the Blankertz SMR-predictor
[r = 0.428, p = 0.087]. Finally, these analyses revealed some correlations between MI-BCI per-
formance and (1) parietal θ-power in both pre-trial and in-trial measurements, (2) frontal and
occipital α-power in both pre-trial and in-trial measurements and (3) β-power: FT7 in pre-trial
and Oz in in-trial measurements. These results are depicted in Fig 2. However, all these correla-
tions failed to reach significance after a Positive False Discovery Rate (pFDR) correction for
multiple comparisons [51].

Correlations between performance and psychometric tests
Bivariate Pearson correlation analyses revealed correlations between MI-BCI performance and
(1) Mental Rotation scores [r = 0.696, p< 0.005], (2) Tension [r = -0.569, p< 0.05], (3)
Abstractness ability [r = 0.526, p< 0.05] and (4) Self-Reliance [r = 0.514, p< 0.05] (see Fig 3).
Tension, abstractness and self-reliance were assessed by the 16 PF-5. High “tension” scores
reflect highly tense, impatient and frustrated personalities. The Self-Reliant trait, also called
self-sufficiency, reflects the learners’ ability to learn by themselves, i.e., in an autonomous way.
Finally, abstractness refers to creativity and imagination abilities. Among these four factors,
only the Mental Rotation score reached significance after the Positive False Discovery Rate cor-
rection for multiple comparisons [p< 0.05] [51].

First Predictive Model of MI-BCI Performance: Model ]1
A Step-Wise Linear Regression was used in order to determine a predictive model of each
user’s average MI-BCI performance obtained across the different training sessions. To reduce
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Fig 2. Correlations between MI-BCI performance and neurophysiological markers. Statistically
significant correlations (before the correction for multiple comparisons) between MI-BCI performances and
the average signal power recorded on the electrodes for the different frequency bands (θ, α and β) as a
function of the period: pre-trial (from 2500ms to 500ms before the instruction) or during trial (from 500ms to
3500ms after the feedback start). None of these predictors reached significance after the correction for
multiple comparisons.

doi:10.1371/journal.pone.0143962.g002

Fig 3. MI-BCI Performance as a function of personality profile.Graphs representing the participants’
MI-BCI performances as a function of (1) Mental Rotation scores -top left-, r = 0.696; (2) Self-Reliance -top
right-, r = 0.514; (3) Tension -bottom left-, r = -0.569; (4) Abstractness -bottom right-, r = 0.526.

doi:10.1371/journal.pone.0143962.g003
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the dimensionality of the problem (and thus avoid the Curse-of-Dimensionality [52]), while all
the psychometric test scores were used (43), only the neurophysiological predictors which were
correlated with MI-BCI performance before the pFDR (20 out of ± 280 neurophysiological
patterns) were used as potential explanative variables in the regression. This regression resulted
in a first model, called MODEL ]1, including six factors [R2

adj = 0.962, p< 0.001] (see Fig 4):

Mental Rotation score, Self-Reliance, Memory Span, Tension, Apprehension and the“Visual/
Verbal” subscale of Learning Style. MODEL ]1 explains more than 96% of the performance vari-
ance of the dataset.

In order to evaluate (1) the stability and (2) reliability of MODEL ]1, step-wise linear regres-
sions were then performed using a leave-one-subject-out cross validation process. During the
first step, 17 models were generated, each of them based on the data of all the participants
except one (i.e., the training dataset). This first step allowed to assess the stability of the model
by comparing the factors included in each of the models to the ones included in MODEL ]1.
During the second step, each of these models was tested on the only participant not included in
the respective training datasets (i.e., the testing dataset). This second step aimed at determining
the reliability of the models. Each model generated from the training dataset enabled to deter-
mine a predicted performance as well as a confidence interval for the corresponding testing
dataset. This testing dataset used the participant’s scores obtained at the psychometric tests
that were included as factors in the respective training model. The model was considered reli-
able when the real preformance fell within the predicted confidence interval.

The first step of the the leave-one-subject-out cross validation process revealed the instabil-
ity of MODEL ]1. Indeed, only 5 out of 17 models included the same factors as MODEL ]1. In 11
out of 17 models, 2 or more factors were different fromMODEL ]1. More specifically, the cross
validation resulted in 13 different models for the 17 training datasets, with 27 different factors
included in the different models. Among these 27 factors, 17 were present in only 1 or 2 models
out of the 17.

The second step consisted in testing these 17 models on their respective testing datasets, i.e.,
on the only participant not included in each training dataset. Results revealed that the real per-
formance of 9 out of 17 participants fell within the predicted confidence interval, with an abso-
lute mean error (Perfpredicted—Perfreal) of 2.68 points (SD = 2.37, range: [0.38, 8.98]).

Fig 4. Characteristics of Model ]1. This model included 6 factors: Mental Rotation, Self-Reliance, Memory
Span, Tension, Apprehension and the “Visual/Verbal” dimension of the Learning Style. It enabled to explain
96.2% participants MI-BCI performance variance [R2

adj = 0.962, p < 0.001].

doi:10.1371/journal.pone.0143962.g004
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Second Predictive Model of MI-BCI Performance: Model ]2
In MODEL ]1, the “mental rotation” factor was selected first in the regression and highly corre-
lated with performance (r = 0.696), which demonstrates its strong influence on the model.
While being consistent with the nature of the tasks performed by the participants, this strong
influence was likely to hide the effect of other important factors [53, 54]. Moreover, the mental
rotation score is most probably mainly related to the performance at the mental rotation imag-
ery task, and therefore not independent of the mental tasks used in this specific BCI. Conse-
quently, a second regression analysis was performed without the mental rotation variable. It
resulted in a model, called MODEL ]2 [R2

adj = 0.809, p< 0.001], described in Fig 5 and including

4 parameters: Tension, Abstractness, the Learning Style “Active/Reflective” subscale and Self-
Reliance. Tension, Abstractness and Self Reliance were assessed by the 16 PF-5, whereas the
“Active/Reflective” dimension is a subscale of the Learning Style Inventory.

As was done for MODEL ]1, the stability and reliability of MODEL ]2 were assessed using a
leave-one-subject-out cross validation process. Results are detailed in Fig 6 which presents
each training dataset, allnXXmeaning that the training dataset was composed of all the partici-
pants except XX. The factors included in the model as a function of the dataset considered, as
well as the R2

adj value of each model are also shown.

The first step allowed to evaluate the stability of MODEL ]2. The same process as the one
introduced in the previous section was used: 17 models were generated from the 17 training
datasets, each of them including the data of all the participants except one. Results revealed
that among these 17 models, 10 included exactly the same factors as the ones included in
MODEL ]2: Tension, Abstractness, the “Active/Reflective” Learning Style subscale and Self-Reli-
ance. In 5 out of the 7 remaining models, only one factor, Self-Reliance, was missing. Finally,
one training dataset (alln23) induced a model including all the parameters present in MODEL ]2
plus the Power dimension of the Locus of Control and the Matrix subscale of the WAIS-IV,
while in another dataset (alln28), Tension, Abstractness and the Digit Span subscale of the
WAIS-IV were included.

The second step allowed to determine the reliability of MODEL ]2. It consisted in testing each
model on the corresponding testing dataset, i.e., on the only participant whose data were not
included in the training dataset. The results of this second step are detailed in Fig 7. This figure
shows, for each participant (i.e., each testing dataset), (1) real mean MI-BCI performance
across the 6 sessions, (2) predicted performance, with its associated confidence interval and (3)

Fig 5. Characteristics of Model ]2. This model included 4 factors: Tension, Abstractness, the “Visual/
Verbal” dimension of the Learning Style and Self-Reliance. Abstractness, the “Visual/Verbal” dimension of
the Learning Style and Self-Reliance had positive weights. Tension was the only factor to have a negative
weight. This model enabled to explain 80.9% of MI-BCI performance variance [R2

adj = 0.809, p < 0.001].

doi:10.1371/journal.pone.0143962.g005
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the error of the model, i.e., Perfpredicted—Perfreal. The average size of the confidence interval was
9.89% and the mean value of the absolute model error was 2.87%. The real performance of 14
out of 17 participants fell within the confidence interval, while the real performance of the 3
remaining participants, S14, S23 and S28, was lower than predicted.

In order to ensure that the successful prediction of BCI performance using the personality
and cognitive profiles of the users was not due to chance, a permutation test was performed.
The aim of this test was to estimate the true chance level in mean absolute error given our data.
To do so, the first step consisted in randomly permuting the mean BCI performances of the

Fig 6. The 17 models generated from leave-one-subject-out cross validation process. The coefficients
for each factor that was included in the model generated from the training datasets (allnXXmeaning that the
training dataset was composed of all the participants except XX) are detailed in each row.

doi:10.1371/journal.pone.0143962.g006

Fig 7. Results of the test of the 17 models generated from the training datasets on their respective
testing datasets. The table shows training and testing datasets, the real performance of the testing dataset,
the predicted performance of the testing dataset with the corresponding confidence interval, as well as the
error of the model. Finally, in the last column the mental rotation score of the participant is outlined.

doi:10.1371/journal.pone.0143962.g007
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training subjects (still using a leave-one-subject-out cross validation). The second step con-
sisted in using the step-wise linear regression to obtain a model predicting the (random) per-
formances of these training subjects from their (real) personality and cognitive profile, in order
to simulate a random predictive model. During the third step, this model was used to predict
the real BCI performance of the left-out subject. This step was repeated using each subject as
the test subject, and the obtained mean absolute error over all subjects was stored. This process
was repeated 1000 times, each time with a different random permutation of the subjects’ BCI
performances, to estimate the performances obtained by 1000 predictive models with chance
level accuracy. The obtained mean absolute errors were then sorted over the 1000 permutations
in descending order, and the 99-percentile and 95-percentile were assessed to identify the
chance level for p = 0.01 and p = 0.05, respectively. The results indicated that the mean absolute
error of 2.87 that we obtained was better than chance with p< 0.01. This means our model can
indeed generalize to new subjects and predict their MI-BCI performances from their personn-
ality and cognitive profile. More precisely, the chance level model (obtained with the permuta-
tion test) predicted an average accuracy of 51.6331 ± 0.8620%, which corresponds to an
absolute average error of 4.6859 ± 0.8752%. The chance-level predictions for each subject are
displayed on Fig 7.

Relationship between Model ]2 and Mental Rotation Scores
Fig 8 outlines women’s results on top and men’s results on the bottom at both the MI-tasks
(left) and mental rotation test (right). First, graphs on the left represent each participant’s real
(left) and predicted (right) performance for each participant, with the corresponding confi-
dence intervals. These graphs show that the real performance value of 14 out of 17 participants
fell within the predicted confidence interval, while it was lower for only 3 participants: S14, S23
and S28. Second, graphs on the right represent the Mental Rotation scores for all the partici-
pants. Women and men were separated due to the important gender effect associated with this
test [46]. Women’s mean score is 19.13/40 (SD: 6.29, range: [5, 27]). Men’s mean score is 29/40
(SD:6.56, range: [18, 35]). Women’s and men’s mean scores are represented as a horizontal line

Fig 8. Real and predicted BCI performance as well as Mental Rotation scores according to the gender.
Women’s results are shown at the top, men’s results on bottom. On the left, the graphical representation of
the real (left) and predicted (right) BCI-performance of each participant, with the corresponding confidence
intervals. On the right, the mental rotation scores of each participant with the horizontal line representing the
mean score of the group. The three participants for whom the model overrated the performance are those
with the lowest mental rotation scores (striped participants).

doi:10.1371/journal.pone.0143962.g008
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on the graphs on the right of Fig 8. The rectangle surrounding this line represents the
mean ± 1SD interval. Only 3 participants, one woman and two men, are below this interval:
S14, S23 and S28.

It is noticeable that the same participants, i.e. S14, S23 and S28, (1) had lower real MI-BCI
performance than the one predicted by the model and (2) had lower mental rotation scores
than the average.

Discussion
In this paper, we proposed a predictive model of MI-BCI performance based on the data of 17
participants. The important number of runs (30, spread over 6 sessions) attenuated the
between-session variability (which could be due, e.g., to fatigue or motivation fluctuation, cap
position variation, etc.) and thus enabled to more precisely estimate the participants’ actual
long-term ability to control an MI-BCI. For the first time, performance predictors were not
determined in a context of pure motor-imagery, since participants were asked to perform one
motor imagery task -left-hand movement imagination- as well as two non-motor MI-tasks
-mental rotation and mental subtraction-.

Five major results were obtained. The first is the strong correlation between MI-BCI perfor-
mance and mental rotation scores. The second major result is the fact that, despite an apparent
consistent relation between MI-BCI performance and frontal α and parietal θ-power which
could suggest a role of attention processes, no significant correlation was revealed after the cor-
rection for multiple comparisons and these predictors were not selected in the regression.
Thus, the considered predictors seem not to be robust nor relevant enough to predict MI-BCI
performance over multiple sessions. Two plausible explanations of this result are the fact we
considered 6 sessions whereas these neurophysiological predictors were computed, on the liter-
ature, based on one single session, and also the fact our paradigm involves three different MI-
tasks, whereas only motor-imagery was considered in the studies from which the neurophysio-
logical predictors were extracted. What is more, since participants were asked to perform one
motor imagery task, it is interesting to notice the tendency towards a correlation between the
Blankertz’s SMR-predictor and MI-BCI performances which strenghtens the reliability of this
predictor for SMR modulation abilities. The fact this predictor is not significantly correlated
with MI-BCI performance could also be partly due to our experimental protocol. Indeed, as no
2 minute-long baseline was recorded the predictor was computed based on the concatenation
of all the 3 second-long pre-trials of the runs, which could impact its performance. The third
result is the definition of MODEL ]1 which explained more than 96% of the variance of partici-
pants’MI-BCI performance. This model was composed of six factors: mental rotation, self-reli-
ance, visuo-spatial memory span, tension, apprehension and the “visual/verbal” dimension of
the learning style. The main flaw of MODEL ]1 was its instability, revealed by the cross validation
process. This instability could be due to the important role of the mental rotation factor in the
MI-BCI performance prediction. Indeed, its strong correlation with MI-BCI performance
could prevent other important factors from being expressed in the regression. Thus, the fourth
major result is MODEL ]2, from which the mental rotation factor was excluded. MODEL ]2
explained more than 80% of MI-BCI performance variance and was composed of four factors:
tension, abstractness, self-reliance and the “active/reflective” dimension of the learning style.
This model appeared to be both stable and reliable to predict MI-BCI performance. It should
be noted that since we averaged the BCI performances over the 6 sessions, the performance
variance across subjects was rather low. As such, although our model predicted the perfor-
mance significantly better than chance, the obtained error rate was not that low as compared to
that obtained by a randommodel. Nonetheless it was still better, and, more importantly, it
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enabled us to identify the relevant factors (cognitive profile and personality) linked to BCI per-
formances. Finally, the fifth and very interesting result is the complementarity between MODEL

]2 and mental rotation scores. Indeed, the only participants for whomMODEL ]2 failed, by over-
rating their performances, were the participants with a very low mental rotation score. These
results are discussed in the following paragraphs.

A first very interesting result is the prominent role of mental rotation scores: this factor is
highly correlated with MI-BCI performance, is the first one to be selected in MODEL ]1 and
brings relevant additional information to MODEL ]2 to predict MI-BCI performance. Mental
rotation scores reflect spatial abilities [55], i.e., the capacity to understand and remember spa-
tial relations between objects. Mental rotation, and thus spatial abilities, are intimately related
with the three mental imagery tasks considered in this study. First, it is obviously related with
the mental rotation task. Second, [56] showed that children confronted with difficulties to per-
form arithmetics also had low spatial abilities. Third, the mental rotation test is actually used to
evaluate motor imagery abilities in healthy subjects and patients with brain injuries [57]. The
close relationship between mental rotation and the three MI tasks could explain the strong
implication of spatial abilities in participants’ capacity to perform the MI tasks proposed to
control a BCI system. This relationship suggests that it would be interesting to consider each
MI task independently. However, given the protocol and the kind of classifier used, doing so
would most probably provide biased results and/or results that make little sense. Indeed, 3
“‘one vs all”’ linear discriminant analysis (LDA) classifiers were used, which means that each
classifier was trained to discriminate the targeted MI task from the other two. Thus, the feed-
back (blue bar) was not informing the user about how well he was performing the target MI
task, but how much this target MI task was distinguishable from the other two. Thus, analysing
the performances “‘one MI task vs. one MI task”’ would make little sense, as this was not what
the user was trained to do. We could have trained offline new classifiers to discriminate “‘one
MI task vs. rest”’ to know how well the different MI tasks were performed independently from
the others. But the performances could be very different from the ones presented to the user.
For instance, an MI-task could be associated with good performances when using a “‘one vs.
all”’ classifier (because it is well distinguishable from the other MI tasks) and at the same time
associated with bad performances when using a “‘one vs. rest”’ classifier (because the brain
activity associated with this MI task is close to the resting state). In such a case, the participant
would not have put much effort in trying to improve his performance while doing this MI task
because he thought he was managing well and so it does not make sense to study his perfor-
mance in another context (i.e., with another classifier) as the participant did not receive any
feedback enabling him to know that he had to adapt his strategy.

Two other personality factors were strongly correlated with MI-BCI performance and are
included in both models: tension and self-reliance. The tension dimension reflects highly tense,
impatient and frustrated personalities while the self-reliance dimension, also called self-suffi-
ciency, reflects the learner’s ability to learn by themselves, i.e., in an autonomous way. Both
were assessed using the 16 PF-5 questionnaire. MI-BCI performance appeared to be negatively
correlated with the tension dimension and positively correlated with the self-reliance dimen-
sion. These factors have been shown to be related to the nature of MI-BCI training which is a
distant learning, i.e., a learning occuring in a context free of social interaction (the learner inter-
acts with a computer, there are no teachers or students). Indeed, on the one hand, [58] showed
that learners easily feel confusion, frustration and anxiety when confronted to distant educa-
tion due to the lack of feedback from an instructor, compared to classic classroom education
situations. Therefore, it seems relevant that learners with highly tense personalities encounter
difficulties in learning tasks based on distance education such as the one presented in this
study. On the other hand, in [59], autonomy is presented as being of utmost importance in
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independant learning, and thus in distance learning. During MI-BCI training, users have to
lead important metacognitive processing to identify knowledge and strategies allowing them to
optimise their performances. As a consequence, users with low Self-Reliance scores may have
difficulty when confronted with MI-BCI training protocols, because they need more guidance
about strategies and key steps to carry out during a training session. To summarise, it seems
users with high “Tension” and low “Self-Reliance” traits may need a social presence and emo-
tional feedback to improve their control performance. An alternative hypothesis could also be
that users that are more self-reliant may comply better with the BCI tasks, i.e., they really and
conscientiously perform the required tasks—which other users might not do as well—which in
turns leads to higher classification accuracy. However, since we do not have the ground truth
of whether users did comply with the required tasks, we cannot verify this hypothesis. This
seems nonetheless a less likely hypothesis than the ones related to distant learning, which are
more theoretically solid.

The abstractness dimension of the 16 PF-5 was also correlated with MI-BCI performance
and included in MODEL ]2. Abstractness refers to creativity and imagination abilities. It has
been reported that creative people frequently use mental imagery for scientific and artistic pro-
ductions [60] which could explain why participants with high abstractness abilities are more
used to performing mental imagery.

The other factors included in MODEL ]1 and MODEL ]2 were not (linearly) correlated with
MI-BCI performance. First, in MODEL ]1, three additional factors were included: memory span
(assessed by the Corsi block task), which had a negative impact on performance, apprehension
(dimension of the 16 PF-5) and the “Visual/Verbal” subscale of the Learning Style Inventory,
both of them having had a positive impact on participants’MI-BCI performance. The instabil-
ity of MODEL ]1 made the inclusion of these factors anecdotal. However, concerning MODEL ]2,
the last factor, i.e., the “Active/Reflective” dimension of the Learning Style Inventory does not
seem to be anecdotal as it was also included in 16 out of the 17 models generated during the
cross validation process. This “Active/Reflective” dimension seems to be an important factor
even if it is not linearly correlated to MI-BCI performance. Thus, active learners appear to be
more efficient in learning to control an MI-BCI. The “Active/Reflective” dimension considers
the complex mental process that allows converting perceived information into knowledge. This
process can be of two categories: active experimentation or reflective observation [61]. While
active learners like testing and discussing the information, reflective learners need more time to
think and examine it introspectively. As stated in [61], reflective learners need the opportunity
and time to think about the information being presented to achieve a good level of perfor-
mance. Yet, in current standard protocols like the one used in the present study, participants
only have four seconds to perform each MI-task proposed. Another characteristic of active
learners is the fact they are more effective when they “learn by doing”. Yet, [62] showed that
motor-imagery performances are higher when the subjects use active kinesthetic movement
imagination strategies. It could also explain the positive impact of the “Active” trait on MI-BCI
performance.

The final result is of utmost interest and concerns the complementarity of MODEL ]2 with
the mental rotation score. Indeed, results show that 14 out of 17 participants achieved a real
MI-BCI performance that fell within the predicted confidence interval generated from the
step-wise linear regression using a cross-validation process. For the 3 other participants, the
real performance was below this confidence interval. Yet, these three participants were also the
ones with the lowest mental rotation scores. This means that the only times the model failed by
overrating a participant’s performance, was when this participant’s spatial abilities were signifi-
cantly lower than average. This result suggests that the factors included in MODEL ]2, i.e., ten-
sion, abstractness abilities, the “active/reflective” dimension and self-reliance are highly reliable
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to predict MI-BCI performance while the user has normal to good spatial abilities. However, if
the user’s spatial abilities are too low, this factor’s weight being the most influencial, it has the
upper hand and decreases MI-BCI performance. In this case, the model’s overrating of MI-BCI
performance can be anticipated. Considering both MODEL ]2 and spatial abilities together has
the advantage of taking into account all the parameters that seem to impact MI-BCI
performance.

This model should now be tested on larger and more heterogenous populations (for
instance to have a wider range of performance) in order to confirm (or refute) its validity, and
adjust the value of the coefficients associated with each factor. Nonetheless, this model offers
promising perspectives for improving MI-BCI training protocols.

This study has highlighted the huge impact of spatial abilities on MI-BCI performance.
Future work will consist in designing new kinds of MI-BCI training protocols aiming at
improving users’ spatial abilities, prior to MI-BCI use. Concretely, based on his/her basic spa-
tial abilities, the user will be provided with specific exercices. The difficulty of these exercices
will increase gradually, according to the user’s results, to end with complex MI tasks allowing
to control an MI-BCI. It would also be interesting to adapt the MI-tasks to each user so that
they are optimal for each of them.

Furthermore, in order to take into account the personality factors related to MI-BCI perfor-
mance, a virtual learning companion will be developped. It will be able to provide the user with
(1) cognitive support (e.g., by proposing examples) in the case of students with low abstractness
abilities, (2) emotional and social support, notably social presence by giving advice and collabo-
rating during the training procedure, for users with high “tension” and low “self-reliance”
scores.

We hypothesise that by combining tindividualised training to improve the users’ spatial
abilities with a virtual learning companion providing a user-specific support in an intelligent
tutoring system [63], MI-BCI training will be more user friendly.

This improved training protocol could potentially increase acceptability and accessibility of
MI-BCI based technologies, which are extremely promising for improving living standards of
severly motor disabled patients and their families, for stroke rehabilitation, for leisure (e.g.,
video games) or for education.
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Workload estimation from electroencephalographic signals (EEG) offers a highly sensitive
tool to adapt the human–computer interaction to the user state. To create systems that
reliably work in the complexity of the real world, a robustness against contextual changes
(e.g., mood), has to be achieved. To study the resilience of state-of-the-art EEG-based
workload classification against stress we devise a novel experimental protocol, in which
we manipulated the affective context (stressful/non-stressful) while the participant solved
a task with two workload levels. We recorded self-ratings, behavior, and physiology from
24 participants to validate the protocol. We test the capability of different, subject-specific
workload classifiers using either frequency-domain, time-domain, or both feature varieties
to generalize across contexts. We show that the classifiers are able to transfer between
affective contexts, though performance suffers independent of the used feature domain.
However, cross-context training is a simple and powerful remedy allowing the extraction
of features in all studied feature varieties that are more resilient to task-unrelated variations
in signal characteristics. Especially for frequency-domain features, across-context training
is leading to a performance comparable to within-context training and testing. We discuss
the significance of the result for neurophysiology-based workload detection in particular
and for the construction of reliable passive brain–computer interfaces in general.

Keywords: workload, stress, brain–computer interface, classification, electroencephalography, passive brain

computer interface

INTRODUCTION
The increasing complexity and autonomy of information sys-
tems rapidly approaches the limits of human capability. To avoid
overload of the users in highly demanding situations, a dynamic
and automatic adaptation of the system to the user state is nec-
essary. Reliable knowledge about the user state, especially his
workload, is a key requirement for a timely and adequate system
adaptation (Erp et al., 2010). Examples are systems support-
ing air traffic control, pilots, as well as medical and emergency
applications.

Conventional means of workload assessment, such as self-
assessment and behavior, are intrusive or limited in their sensitiv-
ity, respectively (Erp et al., 2010). Physiological sensors, assessing
for example the galvanic skin response (GSR) or elecrocardio-
graphic activity (ECG), offer an unobtrusive and continuous
measure that has been found sensitive to workload (Verwey and
Veltman, 1984; Boucsein, 1992). In the last two decades, neuro-
physiological activity became popular as a modality for the mea-
surement of mental states in general and of workload in specific.
So-called “passive brain-computer interfaces” (pBCI, Zander and
Kothe, 2011) are able to measure neuronal activity in terms of
the electrophysiological activity of neuron populations as in the
case of EEG or the oxygination of the cerebral blood flow as for
functional near-infrared spectroscopy (fNIRS). Both approaches
have been found informative regarding the detection of cognitive
load (Brouwer et al., 2012; Solovey et al., 2012), and there is evi-
dence for a partially superior sensitivity of neural measurements

compared to other physiological sensors (Mathan et al., 2007) or
self-report (Peck et al., 2013).

Most experiments on passive BCI use a very controlled
approach, which naturally limits the range of real-world con-
ditions they reflect. While this control is necessary to ensure
the psychophysiological validity of the mental state detection,
their results lack a certain ecological validity, they can not be
generalized to other contexts. This might be one of the most
impeding problems for the creations of passive BCI systems that
work in the real world, since daily life is characterized by the
variability of the conditions we function under. A prominent
example are changes of affect while working, for example work-
ing under the pressure of an impending evaluation vs. work
without pressure. A system that is supposed to work in such
contexts needs to be calibrated and tested in them. Previous
research in the domain of pBCI largely ignored the problem. To
shed light on the interaction of mental state classification and
change of affective context, we devised a protocol that recre-
ates conditions of work, requiring different effort, during relaxed
conditions and under psychosocial stress in a controlled envi-
ronment. To study the resilience of a state-of-the art workload
detection system to changes in affective context, we train subject-
specific classifiers in either stressed or non-stressed context and
test their performance within the same and in the other con-
text.

In summary, the contributions of this paper for the study of
the effect of affective context on workload classification are:
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1. The creation and validation of a novel protocol to test interac-
tions of workload classifier performance and affect1.

2. The design and evaluation of a workload classifier generalizing
across affective contexts.

3. Quantifying the impact across affective context generaliza-
tion on classification performance, with and without across
context-training.

Below, we will give the reader some background to
neurophysiology-based detection of workload under vary-
ing (affective) user states and its potential interactions with stress
responses. Then, we will introduce the employed approaches
to manipulate the user’s mental state, the used devices, and
the applied signal processing and classification algorithms. We
will then report the nature of the found effects, discuss their
relevance, and conclude with the general consequences and
limitations of the presented findings.

RELATED WORK
DETECTION OF WORKLOAD FROM NEUROPHYSIOLOGY
Mental workload can be defined as (perceived) relationship
between the amount of mental processing capability and the
amount required by the task (Hart and Staveland, 1988). The
closer the requirements are to the actual capabilities, the higher
is the (perceived) workload. Therefore, a general strategy for
workload manipulation is the manipulation of task demand or
difficulty (Gevins et al., 1998; Grimes et al., 2008; Brouwer et al.,
2012), though alternative strategies, such as the manipulation
of feedback or participant motivation (Fairclough and Roberts,
2011), exist.

Already in 1998, Gevins et al. (1998) showed that EEG is a
viable source of information regarding the workload of a per-
son, enabling 95% accuracy when using about 30 s of signal.
However, there are many factors that can affect the performance
of classification algorithms, such as the number of training data
available, their distribution, their separability between classes, the
data signal-to-noise ratio, the similarity (in terms of data distri-
bution) of the training data and testing data, etc. (Duda et al.,
2001). The estimation of these performances also depends on the
number of testing data available (Müller-Putz et al., 2008), and
the way they are estimated (cross-validation, independent test
set). Finally, more BCI-specific factors affect the performances,
such as whether the classification is subject-specific or subject-
independent (see, e.g., Lotte et al., 2009), which subjects are used
(there is a huge between-subject variability), whether the train-
ing and testing data are from the same session (e.g., same day)
or not, etc. (Lotte et al., 2007). In this regard, Grimes et al.
(2008) showed that a number of factors, such as the numbers
of channels, amount of training data, or length of trials, have a
strong influence on classification performance of workload clas-
sifiers. For example, reducing the length of the signal from 30 to
2 s reduces the classification performance on two workload lev-
els from almost 92% to about 75%. Similar tradeoffs between
optimal and practical signal processing settings are reported for

1The validation of the administered stress-induction protocol was presented
at the PhyCS 2014 conference (see Jeunet et al., 2014 for more details).

channel number and training time. Another work, by Brouwer
et al. (2012), studied in a similar setup the feasibility of different
types of features (i.e., from the time- and frequency-domain, and
combined) to differentiate workload levels, finding that the differ-
ent feature types work comparably well with accuracies of about
85% after 30 s. Reducing the signal length to 2 s reduced the accu-
racy to about 65%. Zarjam et al. (2013) showed that workload
manipulated by an arithmetic task can be classified with a per-
formance of 83% for seven workload levels. Walter et al. (2013)
tested the generalization of workload classifier from simple tasks,
such as go/no-go, reading span, n-back tasks, to complex tasks
involving diagram and algebra problems. While they were able
to train well-performing classifiers for the simple tasks, reaching
performances of about 96% for two classes on signals of a few
seconds length, a cross-testing of a workload classifier trained on
a simple task to a complex task did not succeed. However, since
in both studies the order of workload levels was not random-
ized, a temporal trend present in the features could have biased
the results toward a higher accuracy. Overall, these studies show
that the workload level can be classified from neurophysiological
activity. Indeed, it has also been suggested that neurophysiological
information is more sensitive than information from other phys-
iological signals (Mathan et al., 2007). Most importantly, these
studies show that different factors, mainly methodological differ-
ences in workload induction, signal acquisition and processing,
can have significant influences on the classification results.

However, to date there have only been few studies regarding
the influence of the mental state changes during training and test-
ing on the classifier performance. For active BCI, Reuderink and
colleagues studied the influence of frustration on left and right
hand movement classification during a computer game, using
freezing screens and button malfunctions as induction tools (see
Reuderink et al., 2013). The resulting loss of control (LOC) dur-
ing “frustrating” episodes, surprisingly led to higher classification
performance than during normal, relaxed game play (Reuderink
et al., 2011). Zander and Jatzev (2012) induced LOC in a sim-
ilar way during a simple behavioral task, the RLR paradigm,
which resulted in lower classification performance. For passive
BCI and specifically for workload level detection, only Roy et al.
(2012) tested the impact of fatigue on EEG signal character-
istics and workload classification performance. With increasing
fatigue, the differentiating signal characteristics diminished and,
consequently, the classification performance declined. This lack
of research on interactions between passive BCI and changes in
user state is problematic, since BCIs in general have been found
susceptible to changes in task-unrelated mental states during clas-
sification, such as attention, fatigue or mood. Specifically, it is
believed that variations in task-unrelated mental states are par-
tially responsible for what is called non-stationarities of the signal,
the change of its statistical properties over time, and thereby the
source of one of the most notorious problems for BCI (Krusienski
et al., 2011; van Erp et al., 2012).

In the next section, we will briefly introduce the concept of
stress, which is another possible contextual factor influencing
workload estimation that is occurring during daily life and work,
and thus might be a relevant source of variance for workload
detection devices.
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STRESS RESPONSES AND WORKLOAD
The psychophysiological concept of “stress,” was introduced in
1936 by Selye (1936) to describe “the non-specific response of
the body to any demand for change.” In that sense, it is an
organism’s response to an environmental situation or stimulus
perceived negatively—called a “stressor”—which can be real or
imagined, that taxes the capacities of the subject, and thus has
an impact on the body’s homeostasis (that is to say that the con-
stants of the internal environment are modified). To face the
demand (i.e., to restore homeostasis), two brain circuitries can
be activated during a “stress response cascade” (Sinha et al.,
2003; Dickerson and Kemeny, 2004; Taniguchi et al., 2009): the
sympatho-adrenomedullary axis (SAMa, also called the noraden-
ergic circuitry) and the hypothalamus-pituitary gland-adrenal
cortex axis (HPAa). On the one hand, the SAMa induces the
release of noradrenaline which allows immediate physical reac-
tions (such as increased heart rate and skin conductance, or
auditory and visual exclusion phenomena) associated with a
preparation for violent muscular action (Dickerson and Kemeny,
2004). On the other hand, the HPAa activation (which is lower)
results in the releasing of cortisol the purpose of which is to redis-
tribute energy in order to face the threat. Thus, more energy
is allocated to the organs that need it most (brain and heart),
while non-necessary organs for immediate survival (reproductive,
immune and digestive systems) are inhibited. This stress response
cascade ends when homeostasis is restored.

However, stress can be of different types, such as physical, psy-
chological or psychosocial (Dickerson and Kemeny, 2004), each
kind of stress being associated with a specific response. Indeed,
physical stress, induced by extreme temperatures or physical pain
for example, is associated with an increase of heart rate (Loggia
et al., 2011), skin conductance (Boucsein, 1992; Buchanan et al.,
2006) and subjective stress ratings but with only a weak corti-
sol response (Dickerson and Kemeny, 2004). These results suggest
that this kind of stress induces an activation of the SAMa but only
a weak activation of the HPAa. Psychological or mental stress,
associated with difficult cognitive tasks, uncontrollability or neg-
ative emotions is associated with a weak release of cortisol (weak
HPAa activation), but strong effects on heart rate and skin con-
ductance (strong SAMa activation) (Boucsein, 1992; Reinhardt
et al., 2012). Finally, psychosocial stress, triggered by a social eval-
uation threat (that is to say a situation in which the person’s own
estimated social value is likely to be degraded), and added to by a
feeling of uncontrollability (in particular during the Trier Social
Stress Task (TSST) Kirschbaum et al., 1993), has been shown to
induce a strong activation of both the SAMa (Hellhammer and
Schubert, 2012) and the HPAa (Dickerson and Kemeny, 2004).

Psychosocial stress and workload potentially can interact on
physiological, neurophysiological and behavioral levels. Since
workload can also be understood as the response to a particu-
lar type of psychological stressor, such as increased task demand,
both concepts are associated with the activation of the sympa-
thetic nervous system (see SAMa above). Furthermore, psychoso-
cial stress and workload share also neurophysiological responses.
From research in the neurosciences, and consistent with the
notion of neural response systems, we know that stress has
strong correlates in the EEG as well. One of the most prominent
correlates of anxiety, as induced by psychosocial stress, is found

in the alpha band, and specifically in brain asymmetry. Tops
et al. (2006) proposed that cortisol administration (which sim-
ulates a stress situation) leads to a global decrease of cortical
activity (except for the left frontal cortex in which activity is
increased). However, other studies (Lewis et al., 2007; Hewig et al.,
2008) showed that stress was associated with a higher activity in
the right hemisphere, and that the right hemisphere activation
was correlated with negative affect. For Crost et al. (2008), the
explanation of these conflicting results would be that an asso-
ciation between EEG-asymmetry and personality characteristics,
such as anxiousness, may only be observed in relevant situations
to the personality dimensions of interest. For workload, on the
other hand, we know that the alpha band plays a role in terms
of increased sensory processing leading to decreased occipito-
parietal alpha power (Gevins et al., 1998; Brouwer et al., 2012),
as well as for frontal alpha asymmetry covarying with changes
in engagement (Fairclough and Roberts, 2011). From a theo-
retical point of view, Eysenck and Derakshan (2011) suggested
that increasing anxiety, for example due to psychosocial stress,
has effects on different cognitive processes, leading to impaired
processing efficiency and performance effectiveness. Specifically
for workload-related processes, their “attentional control the-
ory” suggests that anxiety impairs efficient function of inhibition
and shifting mechanisms of the central executive, subsequently
decreasing attentional control and increasing distraction effects
of irrelevant stimuli. However, these deficits might not necessar-
ily lead to decreases of performance if they are compensated by
alternative strategies, such as enhanced effort.

Summarizing, increases in workload, as induced by higher task
demand, can be subsumed under the concept of psychological
stress and have been found to lead to increasing physiological and
neurophysiological activity that has also been found responsive to
anxiety as induced by psychosocial stress. Furthermore, cognitive
theories propose links between anxiety and pre-attentional and
attentional cognitive processes, which are expressed in behavior
and physiology. Due to these possible interactions of workload
and stress, it seems relevant to experimentally study the effect of
stress on workload detection.

RESEARCH QUESTIONS
The work on the effects of potential contextual factors, such as
moods or fatigue, on the stability of BCI performance, and the
physiological and psychological links between stress and cognitive
processes suggests that stress can be a relevant factor influencing
the classification of workload levels. In more general, the findings
of context-dependency of BCI performance make it seem impera-
tive to explore the effect of factors, such as mood, on brain signals
and classifier performance, to gain insight into the relevance of
task-unrelated mental states on classifier performance, and to find
ways to render classifiers robust against such changes. Specifically,
for the development of reliable passive BCIs in the wild, those
functioning robustly in private or work environments, the influ-
ence of contextual changes of mental states that are predominant
in the context of application have to be explored. That is why
we test the robustness of three workload classifiers, using features
from either frequency-, time-, or both domains, to the influence
of (psychosocial) stress. We let participants work under different
levels of workload, while either under the impression of being
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observed and validated, or while being relaxed and free from this
kind of pressure. We are interested in the effect of the contextual
manipulation of stress on the classifier performance and in testing
cross-context training as a simple and straightforward remedy to
the problem. Thus, we address the following questions:

Q1: Can we induce stress and workload in a controlled man-
ner? We validated stress and workload manipulation of our exper-
imental protocol using participants’ self-assessments, behavioral
performance, and physiological indicators of sympathetic ner-
vous system (SNS) activation (i.e., GSR, ECG). Stress is expected
to increase perceived anxiety and SNS activity, while workload
increase should be reflected in increased perceived arousal and
mental effort, decreased performance, as well as increased SNS
activity (Verwey and Veltman, 1984; Boucsein, 1992).

Q2: Can we train a workload classifier based on the data collected
via this protocol? To ensure that we are using a state-of-the-art
workload classifier, we trained the classifier on all data, irrespec-
tive of context, as done in conventional studies. We expect a
performance of about 70% as shown by Grimes et al. (2008) and
Brouwer et al. (2012) under similar conditions.

Q3: Does the classifier generalize across affective contexts, and
if so, how well? To study the effect of different affective con-
texts on the classification performance, we compared the results
from classifiers trained in either stressful or non-stressful context
and applied it then to test data from the same (“within”) or the
other context (“across”). We expect a higher “within” compared
to “across” performance to indicate the difficulty of the classifier
to generalize.

Q4: Does training based on multiple context render the clas-
sifier resistant against changes in affective context,and if so, how
resistant? To test if the training with combined data from both
affective contexts is effecting the classifier’s capability to gener-
alize, we compare the performance depending on the training
context (“single,” that is training on only stress or non-stress con-
text, or “combined,” that is training over contexts) and expect
higher performance for a classifier trained on data from the
combined contexts.

MATERIALS AND METHODS
As mentioned before, we designed a protocol in which subjects
had to do cognitive tasks involving two levels of mental workload,
manipulated via task difficulty, while being exposed to two levels
of psychosocial stress. We used the EEG signals collected with this
protocol to design and assess a workload classifier across differ-
ent stress conditions. This section describes in details the subjects
involved, the protocol and the method to validate it, the EEG-
based workload classifier used and the evaluations performed
with it.

PARTICIPANTS
Twelve female and twelve male participants were recruited for our
experiment. The participants were between 18 and 54 years old,
with a mean age of 24.7 ± 7.9, and except four all were right-
handed. Educations varied between high school degree and Ph.D.,
with a mean education of 3.1 ± 2.4 years after high school. To
be admitted, people had to be at least 18 years, to speak the
local language and to sign an informed consent. Furthermore,

non-inclusion criteria were applied: bad vision, heart condition,
neurological or psychological diseases, and affective troubles.
Moreover, people were asked to select a time for the experiment
in which they would feel alert. Finally, we asked them not to drink
coffee and tea less than 2 h before the experiment.

MATERIAL
For our recordings, we used the following sensors:
ElectroEncephaloGram (EEG, 28 active electrodes in a 10/20
system without T7, T8, Fp1, and Fp2), ElectroCardioGram
(ECG, two active electrodes), facial ElectroMyoGram (EMG,
two active electrodes), ElectroOculoGram (EOG, four active
electrodes), breath belt (SleepSense), pulse (g.PULSEsensor), and
a galvanic skin response sensor (g.GSRsensor). All sensors were
connected and amplified with three synchronized g.USBAmp
amplifiers (g.tec, Austria). The workload task was designed in the
Presentation software (Neurobehavioral Systems, www.neurobs.
com/presentation) and EEG signals were recorded and visually
inspected with Open ViBE (Renard et al., 2010). Figure 1 shows a
participant sitting fully-wired in the experimental environment.

Subjects were first asked to sign an informed consent and to
fill out three questionnaires: one assessing personal characteristics
(such as gender, age and education) and form Y-A (anxiety state)
and Y-B (anxiety trait) of the State-Trait Anxiety Inventory (STAI)
(Spielberger et al., 1970) (see below for details). Then, all the sen-
sors were installed and a 3 min baseline recorded. To avoid order
effects, we counterbalanced the order of stress and relax condition
(affective context) and 0-back and 2-back task (workload blocks),
resulting in four scenarios (see Figure 2A). Each scenario was
composed of 12 workload blocks in the stressful and 12 workload
blocks in the relaxed context. The scenarios therefore begin with
either relaxation or stress induction, and the workload blocks
either start with the low workload (0-back) or high workload (2-
back) condition. In each affective context, the subject performs, in
alternating order, six times each workload condition (low/high)
(6 × 2 × 2 = 24 min per block), with a short break after six tasks
(i.e., after about 12 min). After each context was absolved, that is

FIGURE 1 | A fully wired participant in the experimental environment

during the relaxation induction period.
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FIGURE 2 | The experimental protocol (A) with four scenarios,

used for counterbalancing the order of conditions: the easy

(0-back task) and difficult (2-back) workload tasks that follow

the (R)elax and (S)tress induction procedures. “RS02” means

that relaxation context is followed by stress context and that the
interleaved workload blocks start with the 0-back condition. The
N-back task (B) requires responses to target and non-target
characters.

after the induction phase and the 12 workload blocks, the STAI
form Y-A questionnaire was administered again to assess the anx-
iety state. Finally, the sensors were removed and the participant
was debriefed about the aim of the experiment.

Stress and relaxation inductions
In order to manipulate stress, we used a stress-induction protocol
based on the Trier Social Stress Task (TSST) (Kirschbaum et al.,
1993) and a relaxation condition using a resting phase, music
and/or videos. The stress-induction protocol is composed of three
parts lasting together about 15 min and it requires the participa-
tion of three people, “the committee,” who are presented as being
body language experts. In the first part, a member of the commit-
tee asks the subject to prepare, during 5 min, a fake job interview
for a position fitting the professional profile of the subject. During
the second part, the committee asks the person to do this job
interview and to speak about himself for 5 min. They tell the sub-
ject that he is filmed for a future behavioral analysis and take notes
during the whole interview. The committee acts as being serious
and neutral/unresponsive toward the subject. The third part is a
3 min long arithmetic task (the subject has to count from 2083 to
0 by steps of 13) and to begin again at any mistake or hesitation.
At the end of this protocol, in order to keep the stress level high,
the committee tells the subject he will be filmed during the work-
load tasks and that he will have to do another interview, which
will be longer, and a self-evaluation based on the recorded film
material after it. Furthermore, during the experiment, partici-
pants are receiving visual feedback about their performance in the
workload tasks. During the stress condition, these feedbacks have
been modified to display a performance 5–10% below their actual
performance. Thereby, this protocol includes psychosocial stress
and uncontrollability in order to maximize the chance to trigger
a stress response for all the participants (Dickerson and Kemeny,
2004). On the other hand, the goal of the relaxation induction was
to create a condition (referred to as “relax” condition) in which
participants would be able to relax and thus execute the work-
load task without the influence of additional psychosocial and
psychological stressors. To allow for an effective relaxation, partic-
ipants were allowed to choose between resting in silence or select

music/videos that would help them to feel calm (Krout, 2007). In
order to measure the level of anxiety of the subjects and thereby
to validate the stress/relax manipulation, the “State Trait Anxiety
Inventory” (Spielberger et al., 1970) is used. It is composed of two
scales of 20 propositions each: STAI form Y-A and STAI form Y-B.
STAI form Y-A score measures anxiety state and is increased when
the person currently experiences psychological stress. A college
student (female/male) has a mean state anxiety index of 35/36,
while values higher than 39/40 have been suggested to detect
clinically significant symptoms (see Julian, 2011).

Workload tasks
We used the n-back task (Kirchner, 1958) as workload task (see
Figure 2B), as it is easy to modify workload while keeping visual
stimulation and behavioral motor requirements the same. Similar
to Grimes et al. (2008) and Brouwer et al. (2012), we decided
for a manipulation of task-difficulty to manipulate workload.
Specifically, we used 0-back (low workload) and 2-back (high
workload) varieties of the n-back task, which were presented in
blocks of 2 min each. In both tasks, a stream of 60 white let-
ters appears on a black background on the screen. Each letter is
presented for 500 ms, followed by an inter-stimulus interval of
1500 ms. Among these letters, 25% are targets. In both tasks, when
a letter appears, the subject is asked to perform a left mouse click if
this is a target letter, and a right mouse click otherwise. For the 0-
back task, the low workload condition, the target is the letter “X”:
each time an “X” appears, the subject has to do a left click, and in
all the other cases he has to do a right click. For the 2-back task,
the high workload condition, the subject has to do a left click if the
letter that appears is the same as the one preceding the last letter.
For example, if the sequence “C A C” appeared, the second “C”
would be a target. At the end of each 2-min block, the subject has
to report his level of arousal (on a scale from 1 to 9) (Bradley and
Lang, 1994) and the perceived effort necessary to perform the task
(Rating Scale of Mental Effort—RSME, Zijlstra, 1993). Finally, a
screen with his performance during the block (see section 4.3.2)
appears. As mentioned before, during the stressful condition, this
displayed performance is lower than the actual performance to
induce additional uncertainty.
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PROTOCOL VALIDATION METHODS
Self-assessment data
To investigate the effect of the psychosocial stress induction on
the STAI score, we computed an ANOVA with this score in
the three factor-levels “baseline,” “after relaxation,” and “after
stress induction.” To assess the effect of both stress and workload
manipulation, we conducted 2 (stress) × 2 (workload) ANOVAs
for the averaged-over-blocks ratings on the arousal scale of the
SAM and on the RMSE.

Behavioral data
To investigate the effects of the experimental manipulations on
behavior, we calculated the performance per block based on the
number of true positive (TP), true negative (TN), false nega-
tive (FN), and false positive (FP) responses resulting from the
button presses within the n-back task (left click for targets,
right click for non-targets) using the following equation: Per f =

(TP+TN)
(TP+TN+FP+FN) . As for ratings, we analyzed the data in a 2 (stress)
× 2 (workload) ANOVA.

Physiological data
Physiological responses were analyzed with respect to heart rate
(HR) and galvanic skin response (GSR). Before applying statis-
tical methods, the GSR data was pre-processed by extracting the

mean GSR value (μS) for each block and then averaging these val-
ues over blocks as described above. The ECG signal was band-pass
filtered between 5 and 200 Hz, applying a notch-filter 48–52 Hz to
reduce power line noise, before mean HR for each of the blocks
was extracted. As for the former analyses, we analyzed the data
with a 2 (stress) × 2 (workload) ANOVA. We are reporting data
as significant if p < 0.05 and as trend if p < 0.1. For all ANOVAs
partial eta squared values (ηp

2) are calculated as a measure of
effect size.

EEG SIGNAL PROCESSING
Our system aims at estimating the level of mental workload of the
user from its EEG signals. To do so, we employed a machine learn-
ing approach based on state-of-the-art algorithms developed for
Brain-Computer Interfaces (BCI) technologies (Lotte et al., 2007;
Blankertz et al., 2008; Ang et al., 2012). This section describes
the way EEG signals were preprocessed and segmented into trials,
the machine learning algorithms used as well as the approach fol-
lowed for the evaluating our method (see Figure 3 for a schematic
overview of these procedures).

EEG preprocessing and segmentation
We first cleaned signals from eye movements (EOG) contami-
nation using the automatic method proposed in Schlögl et al.
(2007). The EEG signals from each 2 min n-back task were

FIGURE 3 | Machine learning approach to workload level classification

from EEG signals. Top: training set, aiming at identifying the relevant
frequency bands (i.e., spectral filters) and channels (i.e., spatial filters), using
the Filter Bank CSP and REFSF approach. Bottom: testing set, using the

optimized spectral and spatial filter to estimate the workload level from an
unknown EEG trial. (CSP, Common Spatial Patterns; REFSF, regularized Fisher
spatial filter; mRMR, maximum Relevance Minimum Redundancy; LDA,
Linear Discriminant Analysis).
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then divided into 60 EEG trials, i.e., one EEG trial per let-
ter appearance. More precisely, each EEG trial was defined as
starting at a letter appearance onset and ending 2 s later, i.e.,
just before the next letter appearance. This resulted in 60 EEG
trials per task, i.e., 720 trials per workload level (360 trials
in the stressful condition, 360 in the non-stressful condition).
Among them, trials corresponding to target letters were dis-
carded in order to avoid confounding and interfering effects
that may result from Event Related Potentials (ERP—notably a
P300) likely to be triggered by target identification. This left
540 trials per workload levels (270 trials per psychosocial stress
condition).

Machine Learning algorithms
In order to estimate workload levels from EEG signals, we inves-
tigated two different types of neurophysiological information: (1)
oscillatory activity and (2) Event Related Potentials (ERP), both
of which having been shown to be useful for such a task (Brouwer
et al., 2012). We set up state-of-the-art signal processing pipelines
in order to estimate workload using these two types of informa-
tion, both individually and in combination (see Figure 3). They
are described below:

Oscillatory activity. To classify low mental workload vs. high
mental workload in EEG signals based on oscillatory activity,
we used a variant of the Filter Bank Common Spatial Patterns
(FBCSP) algorithm (Ang et al., 2012) in order to learn optimal
spatial and spectral features, i.e., EEG frequency bands and chan-
nels. The FBCSP is one of the most efficient algorithms to extract
spatio-spectral features from EEG signals. It was indeed the algo-
rithm used by the winners of the last BCI competition on all EEG
data sets (Ang et al., 2012; Tangermann et al., 2012), showing the
superiority of this method over other approaches. The FBCSP-
based approach we employed works as follows. The first step—the
training step—consists in identifying the most relevant frequency
bands (i.e., spectral filters) and EEG channels (i.e., spatial filters),
using examples of EEG signals from the high and low workload
conditions (see below for details on the definition of the training
sets). To do so, we first filter each training EEG trial into multi-
ple frequency bands using a bank of band-pass filters. Here we
used band-pass filters in the following frequency bands, which
correspond to classical EEG rhythms: δ (1–4 Hz), θ (4–8 Hz), α

(8–12 Hz), β (12–30 Hz), γ (30–47 Hz), and high γ (53–90 Hz).
Then for each of these bands, the band-pass filtered EEG tri-
als are used to optimize spatial filters, i.e., linear combinations
of the original EEG channels. These spatial filters are optimized
using the Common Spatial Pattern (CSP) algorithm (Blankertz
et al., 2008), which finds the optimal channel combination such
that the power of the resulting spatially filtered signals is max-
imally discriminant between the two conditions (here, low and
high workload). We optimize 12 (6 pairs) such CSP filters for
each frequency band. Then, the power of the spectrally and spa-
tially filtered EEG signals is used as features, resulting in each EEG
trial being described by 72 features (12 CSP filters × 6 frequency
bands). From these 72 features, the 18 most relevant ones are
selected using the maximum Relevance Minimum Redundancy
(mRMR) feature selection algorithm (Peng et al., 2005). This

amounts to selecting the 18 most relevant pairs of spectral and
spatial filters. Finally, the 18 selected power features are used to
train a shrinkage Linear Discriminant Analysis (LDA) classifier
(Blankertz et al., 2010; Lotte and Guan, 2010) to discriminate low
workload EEG trials from high workload ones. This concludes
the training step. For testing, i.e., to predict the workload level
of a given EEG trial, the EEG signals are first filtered using the 18
selected pairs of spectral and spatial filters, then the power of the
resulting signals is computing and given as input to the previously
trained LDA classifier whose output indicates the workload level
(high or low).

Event related potentials. To classifiy low mental workload vs. high
mental workload in EEG signals based on ERP, we first band-
pass filtered the signals between 0.5 and 16 Hz, and downsampled
them to 36 Hz, to reduce the signal dimensionality. We only used
the first second of EEG signals from each trial (i.e., the first sec-
ond after letter presentation in the N-back task) to analyse ERP,
i.e., 36 samples per channels. Then, based on these 1-second of
EEG signals from the training set, we learned optimal spatial fil-
ters for the discrimination of ERP based on EEG samples, by
using the Fisher Spatial Filters (FSF) proposed by Hoffmann et al.
(2006). We extracted 6 such spatial filters, which resulted in 216
features (6 filters × 36 EEG samples per filter), using a regular-
ization parameter λ = 0.4 for optimizing the FSF for all subjects.
We finally selected 18 features (i.e., 18 EEG samples) out of these
216 initial ones, using mRMR feature selection. These 18 selected
features were used to train a shrinkage LDA. For testing, the EEG
signals were preprocessed in the same way (i.e., band-pass filtered
in 0.5–16 Hz and downsampled to 36 Hz), spatially filtered using
the 6 Fisher Spatial Filters optimized during training, and the 18
resulting selected features were used as input to the previously
trained LDA classifier whose output indicates the workload level
(high or low).

Combination of oscillatory activity and ERP. In order to com-
bine both oscillatory activity and ERP information, we extracted
18 FBCSP features as described above and 18 ERP features, as
described above as well, from each trial. These 36 features were
concatenated into a single feature vector, which was used as input
to a shrinkage LDA classifier.

Evaluation scheme
The performance of our workload-level estimator was assessed
using sixfold stratified Cross-Validation (CV), separately for each
subject. This means the data from each subject was divided
into six parts, each part containing the same number of trials
from each class (high/low workload). Five of these parts were
used for training, i.e., to identify the relevant spectral and spa-
tial filters, as well as to train the LDA classifier. The 6th part
was used for testing the resulting workload-level estimator for
that subject. This process was repeated six times, with each part
used exactly once as the testing set. For three subjects we used
only three- and fourfold CV due to missing blocks in the end
of the recording. The performance, here the classification accu-
racy (i.e., rate of trials with correctly estimated workload-level),
hence obtained on each testing part are then averaged to give
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a final performance of the workload-level estimator for that
subject.

The goal of our work is to design a generic workload-level
estimator, usable in practice, i.e., that can work across different
affective contexts (here, different psychosocial stress levels). To do
so, we performed different evaluations to estimate (1) the general
performance of our system, independently of the affective con-
text; (2) how it behaves within a given affective context; (3) how
it behaves across different affective contexts, i.e., can a workload-
level estimator calibrated on data from a given affective context
(e.g., a relaxed condition) be used to estimate workload in another
affective context (e.g., a stressful condition), (4) if effects of time
can explain across-context classification performance loss, and
(5) whether calibrating our system with data from different affec-
tive contexts makes the system better or worse, even if used in a
single affective context. Different sub-parts of the data were thus
used for training and testing within our CV scheme, in particular:

1. General performance estimation: This is the overall eval-
uation, in which we used all the data, from both affective
contexts, i.e., with EEG trials from both the relaxed and the
stressful conditions. Therefore, within each fold of the CV, 20
blocks (i.e., 900 trials) were available for training, and 4 blocks
(i.e., 180 trials) were available for testing. The number of tri-
als from each workload-level (high/low) and each psychosocial
stress (relaxed/stressful) was balanced in both the training and
testing set.

2. Within affective context performance estimation: This eval-
uation assessed the performance of our system when calibrated
on a single affective context and tested on the same affective
context. This is the evaluation generally performed in previ-
ous works, in which a single affective context is considered.
Therefore, in each fold of the cross-validation, 10 blocks (i.e.,
450 trials) were available for training, all coming from the
relaxed (resp. stressful) condition, and 2 blocks (i.e., 90 tri-
als) were available for testing, all coming as well from the
relaxed (resp. stressful) condition. The number of trials from
each workload-level was balanced in both the training and
testing set.

3. Across affective context performance estimation: This eval-
uation assessed the performance of our system when cali-
brated on a given affective context and tested on a different
affective context. This evaluation is usually ignored in cur-
rent workload-level estimation works. Previous works indeed
implicitly considered that the user was always in the same
affective state, which is very unlikely in practice and can thus
compromise the usability of the system. Therefore, in each
fold of the cross-validation, 10 blocks (i.e., 450 trials) were
available for training, all coming from the relaxed (resp. stress-
ful) condition, and 2 blocks (i.e., 90 trials) were available for
testing, all coming from the other affective context i.e., the
stressful (resp. relaxed) condition. The number of trials from
each workload-level was balanced in both the training and
testing set.

4. Investigation of time effects on classifier performance: To
rule out that a difference between within-context and across-
context training is merely caused by the time passing between

affective contexts, we devised an analysis similar to the above
two analyses, but with first and second half of each context
instead of relax and stress context. Therefore, we trained our
classifiers on the data of 4 blocks and tested them on 2 blocks
from either the same or the other half of the context. This
was done in a threefold cross-validation scheme and resulted
in two within and two across classification performance val-
ues (one from 1st half to second half, and one backwards) for
each affective context. These were averaged over the affective
contexts and yielded one value for the workload classifica-
tion accuracy for within- and across-context (i.e., “half”) per
participant per half2. For a genuine effect of affective context
instead of an effect of simply the time passing between both
contexts, the “within vs. across halfs” performance loss for a
classifier that was only trained on one half should be smaller
compared to the loss between “within vs. across affective con-
text” performance loss for a classifier that was only trained on
one affective context.

5. Calibration across affective context performance estima-
tion: When considering different affective contexts, an inter-
esting question is whether using data from different contexts
to calibrate the workload-level estimator will make it better
or worse, notably as compared to the within affective con-
text evaluation. Indeed, on the one hand, using data from
different contexts can force the machine learning approach
to identify workload indices that are invariant to the affective
context, thus improving the system, but on the other hand it
adds more noise and variability to the data, which can impede
the machine learning process. Therefore, with this evaluation,
in each fold of the cross-validation, 20 blocks were available
for training, coming from both the relaxed and stressful con-
dition, and 2 blocks were available for testing, coming from
either the stressful or the relaxed condition (but not both). To
ensure that the comparison of this approach with the within-
context approach is fair, we had to use the same number of
training trials for each approach. Indeed, using all the trials
available in the 20 training blocks would mean using more
training trials than in the within-context evaluation, which
could result in higher performance simply due to a larger
number of training trials. Therefore, for this last evaluation,
we randomly selected 6 blocks from each context for train-
ing, from 4 of which all trials were used, while we selected
every other trial from the remaining 2 blocks to keep the work-
load classes balanced within context. Further two blocks were
selected from each context for testing. This procedure was
repeated six times for a cross-validation comparable to the
within-/across context evaluation.

RESULTS
In this section, we first present the validation analysis, suggest-
ing that our protocol indeed induced different levels of workload
and stress (Q1). Then the results of the EEG-based workload
classification over, within, and across affective contexts are pre-
sented, showing that a state-of-the-art subject-specific workload

2For three subjects, the averaging only contained data from the stress context
due to missing blocks in the 2nd half of the relax context.
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classifier (Q2) has difficulty generalizing over affective contexts
(Q3), but can be rendered less context-sensitive by calibration
across affective contexts (Q4).

VALIDATION OF THE PROTOCOL
Subjective indicators
Each subject filled in three “STAI form Y-A” (state) question-
naires: one at the beginning (STAIBL) of the experiment and one
in the end of each affective context, that is after performing the
n-back tasks under stress or relax condition (stress: STAIS; relax:
STAIR) (see Figure 4A). Three data sets were excluded due to
incompleteness. A repeated-measures ANOVA (N = 21) with the
factor levels “baseline,” “stress,” and “relax” showed a significant
difference of perceived anxiety between the conditions [F(2, 20) =
3.6225, p < 0.05, ηp

2 = 0.108]. We conducted a post hoc anal-
yses using paired t-tests with the hypothesis that subjectively
perceived anxiety increases due to the stress induction proce-
dure relative to baseline and relaxation condition. The results
suggest that the stress-induction protocol indeed increases anx-
iety compared to baseline and relaxation condition, and keeps
it significantly higher until measured in the end of the affective
context (see Figure 4A): STAIS scores (mean = 37.5 ± 12.6) are
significantly higher [t(20) = 2.87, p = 0.01] than STAIBL scores
(mean = 30.1 ± 4.6) and they are significantly higher [t(20) =
2.37, p = 0.028] than STAIR scores (mean = 32.2 ± 8.6). This
increased anxiety seems mainly due to the interview and the
apprehension of a final evaluation, rather than due to the n-back
task as such: we found no difference between STAIR and STAIBL

[t(20) = 1.27, p = 0.22], that is when they performed the n-back
tasks knowing that there would be no evaluation.

We furthermore asked the subjects after each block to rate their
arousal on the respective scale of the Self-Assessment Maneken
(see Figure 4B) and to rate the mental effort on the Rating Scale
Mental Effort (see Figure 4C). Two data sets were excluded due
to incompleteness. We submitted the data of each scale to a 2
(stress) × 2 (workload) repeated-measures ANOVA. Regarding
the subjectively perceived arousal, we only found a main effect

of the workload manipulation [F(1, 21) = 4.444, p = 0.047, ηp
2 =

0.175] with higher perceived arousal for the 2-back task (mean =
4.7 ± 1.4) compared to the 0-back task (mean = 4.3 ± 1.7).
Regarding the subjectively perceived workload, we only found
a main effect of the workload manipulation [F(1, 21) = 63.216,
p < 0.0001, ηp

2 = 0.751] with higher perceived effort for the 2-
back task (mean = 48.1 ± 11.5) compared to the 0-back task
(mean = 28.6 ± 12.9).

Objective indicators
For the analysis of the objective indicator of behavioral perfor-
mance, we logged all responses and computed the task accuracy
for each task block (see Figure 5A). Two data sets were excluded
due to incompleteness. We submitted the accuracy to a 2 (stress)
× 2 (workload) repeated-measures ANOVA. As for the subjective
indicators of perceived arousal and effort, we found a main effect
of the workload manipulation [F(1, 21) = 65.251, p < 0.0001,
ηp

2 = 0.757] with higher accuracy for the simple 0-back task
(mean = 97.3 ± 2.0) compared to the hard 2-back task (mean
= 91.1 ± 4.8).

As a further objective indicator, we computed skin conduc-
tance level and heart rate. Four data sets were excluded due
to incompleteness. For heart rate analysis a further data set
was excluded due to malfunctioning sensors. We submitted the
data of the physiological signals to a 2 (stress) × 2 (workload)
repeated-measures ANOVA. For GSR (see Figure 5B), we found
an increase of the skin conductance level [F(1, 19) = 4.4806, p =
0.048, ηp

2 = 0.191], indicating higher sympathetic arousal dur-
ing the stress condition (mean = 3.83 ± 2.05) compared to the
relax condition (mean = 3.52 ± 2.07). Skin conductance level
increased for high compared to low workload condition as well,
however, not significantly. For HR (see Figure 5C), we found a
trend toward an increase of the heart rate [F(1, 18) = 3.2123, p =
0.089, ηp

2 = 0.151], indicating higher sympathetic arousal dur-
ing the stress condition (mean = 79.41 ± 10.23) compared to the
relax condition (mean = 78.30 ± 10.08). More importantly, we
found a highly significant effect of the workload manipulation on

FIGURE 4 | Mean and standard error of mean of subjective stress level

assessments. (A) STAI form Y-A scores, (B) SAM arousal scale, and (C)

RSME. (A) Shows significant increase of perceived stress during the

stressful condition compared to the baseline and the relax condition. (B,C)

Show an increase of perceived arousal and mental effort for the 2-back
compared to 0-back task.
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FIGURE 5 | Mean and standard error of the task performance (A), showing the decreased performance in high vs. low workload conditions, and of GSR

response (B) and heart rate (C), indicating higher physiological activity in response to the psychosocial stress and workload manipulation, respectively.

HR [F(1, 18) = 36.1431, p < 0.0001, ηp
2 = 0.667], with a higher

HR for the more challenging 2-back task (mean = 80.4 ± 9.89)
compared with the relatively easy 0-back task (mean = 77.27 ±
10.19).

In summary, we found evidence for the validity of the stress
and workload induction (Q1) in both, the subjective (question-
naires) and objective (performance and physiological sensors)
measures. This ensures that calibrating and evaluating a workload
classifier on the EEG recorded with this protocol is meaningful.

CLASSIFICATION OF EEG
General performance estimation
In this section we report the general classification performance for
a training on the whole data set, showing that our setup is state-
of-the-art compared to similar studies hence positively answering
question Q2. Specifically, we obtained performances similar to
the best performances that were presented more recently with the
n-back task paradigm and with 2 s short trials by Grimes et al.
(2008) and Brouwer et al. (2012). The data of two participants
was excluded due to incompleteness and of another one due to
malfunctioning EEG sensors.

For the training and testing on the basis of all available data,
those trials recorded during stress and relax context, we achieved
an average classification accuracy of 76.1% when using only
frequency-domain features, with performances between 58.7%
and 95.4% (see Figure 6). According to Müller-Putz et al. (2008),
we determined the above chance-level performance via a bino-
mial test. For a two-class problem and given the number of 1080
trials used in our sixfold cross-validation scheme, the chance-level
is at 53.1% for p = 0.05. Consequently, the classification perfor-
mance was above chance for each subject, with a highly significant
better-than-random performance for the average result over all
subjects (p � 0.0001).

Subsequently, we tested the previously observed increase of
performance for increasing decision intervals, that is when more
data is available for testing (Grimes et al., 2008; Brouwer et al.,
2012). A majority vote over the classifier decisions for all 45 rele-
vant trials of a given block, using only frequency-domain features,

leads to an accuracy of 96%, well over the 71% chance-level result-
ing from a binomial test on the basis of 24 decisions (one per
block). For time-domain features, we observed an average accu-
racy of 74% for 2 s trials (of which only the first was used), and
96% for the judgement after 45 trials. For both feature varieties in
combination, the 2-second accuracy was the highest with 80.4%,
though the block-wise accuracy was only 94.4%. Since all accu-
racies are well over chance level the used classification schemes
enable for a solid classification performance for all feature vari-
eties with the combined frequency- and time-domain features
performing best for short estimation intervals and separate fea-
ture varieties performing best for the long decision intervals.

From a scientific point of view it is necessary to know about
the source of the classification performance: is the information of
neural origin or is it derived from muscular activity that is known
to contaminate higher frequency bands of the EEG (Goncharova
et al., 2003)? Although this question is often eluded in previ-
ous works (Grimes et al., 2008), we tried to answer it by first
computing the percentage of the features selected from each fre-
quency band in the FBCSP algorithm. As Figure 6 indicates, the
majority (about 65%) of features selected with the mRMR fea-
ture selection algorithm employed came from lower frequency
bands (i.e., delta, theta, alpha). However, the remaining 35% orig-
inated in high frequency bands, those over 12 Hz (beta, gamma,
gamma2). To ensure that the classifier performance does rely on
neuronal sources and not on muscle activity, we repeated the
workload classifier evaluation excluding these potentially con-
taminated high frequency bands, both for training and testing. We
achieved a somewhat lower, but again much better-than-random
(p � 0.0001) classifier performance of 74.2%, with accuracies
between 53.9% and 88.2%. This suggests that our workload clas-
sifier does rely mostly on neural information from low frequency
bands.

Within- vs. across-context estimation
In this section we tested the generalization of the classifier to a
different affective context (question Q3). To evaluate the effects
of testing in dependence of training context, we conducted a 2
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(training context: relax, stress) × 2 (testing context: same-as-
training, different-from-training) repeated-measures ANOVA for
each feature type. Figures 7, 8 depict the average classifier per-
formance when tested within and across affective context and the
average loss of performance for the three used feature varieties
(and the loss for the specific frequency bands), respectively.

The main effect found for the testing context when using
frequency-domain features alone [F(1, 20) = 5.610, p = 0.028,
ηp

2 = 0.219] shows that the transfer from one context to another
is problematic and results in a decrease of classifier performance
(mean = 69.4 ± 9.7%) compared to testing on the same con-
text as for the training (mean = 72.4 ± 9.4%). An exploratory
analysis of the effect of context change on classifiers using only
specific frequency bands revealed a significant contribution of
the low frequency bands to the performance decline, while the

less relevant high frequency bands were not or only minimally
contributing (see Figure 8).

For time-domain features alone, the decrease of classifier
performance for across context is as well significant, though
stronger [F(1, 20) = 21.002, p < 0.001, ηp

2 = 0.512], with a lower
across-context classification performance (mean = 69.1 ± 5.5%)
compared to within-context classification performance (mean =
73.3 ± 5.1%).

For frequency- and time-domain features combined, the
decrease of classifier performance across-context (mean = 73.2 ±
8.8%) compared within-context (mean = 77.3 ± 7.9%) is as well
marked [F(1, 20) = 12.104, p = 0.002, ηp

2 = 0.377].
To rule out that the differences between within-context and

across-context training were caused by the time passing between
affective contexts, we divided each context into two parts (1st half,

FIGURE 6 | Mean and standard error of the workload classification

performance (sixfold cross-validation) per subject. The different colored
subdivisions within each bar represent the percentage (total bar height =
100%) of features selected from a specific frequency band (delta, theta,

alpha, beta, gamma, gamma2). For example, for subject 1 on average 9% of
the features were chosen from the delta range. The last bar represents the
mean classification accuracy over subjects and the average contribution from
the frequency bands over subjects.

FIGURE 7 | Mean and standard error of the mean of the classification

performance of a classifier trained in different training contexts (relax,

stress, combined) and tested on data from relax and stress context. The
differences between the testing performance for stress and relax context show

an interaction between training and test factor: the difficulty of the classifier to
generalize to another context. The higher performance for the combined
training set relative to the training on data from a single context indicates a gain
of the classifier in invariance and hence a protection against over-fitting.
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FIGURE 8 | Mean and standard error of the mean loss of the

classification performance of a classifier trained and tested in

different training contexts for the feature types from

frequency-domain (FB), time-domain (ERP), both (FB and ERP),

and for the individual frequency bands (FB α − γ 2). The stars

indicate the significance testing with the respective methods
mentioned in the text (∗p < 0.05, ∗∗p < 0.01). Only the low frequency
bands show significant effects of performance detoriation in the
phase of changing affective context, while the high frequency bands
seem relatively stable against changes in context.

2nd half) and trained and tested the classifiers in the same man-
ner as done for the within (e.g., training and test on 1st half)
and across affective context (e.g., training on 1st half and test
on 2nd half) tests. With the data averaged over affective con-
texts, we conducted a 2 (training context: 1st half, 2nd half)
× 2 (testing context: same-as-training, different-from-training)
repeated-measures ANOVA for each feature type. We did not find
the pattern of performance loss that we observed for within vs.
across affective context testing. Surprisingly, the only effect we
found was a increase of performance for across vs. within con-
text (half) testing for the frequency-domain only feature variety
[F(1, 20) = 5.142, p < 0.04, ηp

2 = 0.204] from 61.1% to 63.7%.
Summarizing, all feature varieties have been found suscep-

tible to changes in affective context. For the frequency-domain
features, only classifiers using the low frequency bands of delta,
theta and alpha are significantly declining in performance when
tested in an affective context different from the training context
(see Figure 8). However, as we showed, these frequency bands are
the most informative regarding the workload level. An additional
test of the within vs. across effects between the 1st and 2nd half
of the affective contexts on classifier performance showed that
the time effect alone does not lead to a consistent decrease of
performance.

Across-context calibration
To evaluate the use of a combined training context to increase
the capability of the classifier to generalize over affective con-
texts (question Q4), we conducted a 2 (training context: average
single, combined) × 2 (testing context: stress, relax) repeated-
measures ANOVA for each feature type. The specific effects of
across-context calibration in comparison to single context (stress
and relax) calibration are depicted in Figure 7.

The main effect of the training context for frequency-domain
features alone [F(1, 20) = 6.816, p = 0.017, ηp

2 = 0.254] indi-
cates a higher performance for training with combined (mean =

72.4 ± 9.5%) vs. with single affective context (mean = 70.9 ±
9.3%). There is no significant difference between testing on the
(optimal) same context vs. combined testing.

For time-domain features the increase of classifier perfor-
mance between single (mean = 71.2 ± 5.2%) and combined
context (mean = 72.1 ± 4.9%) training is as well significant
[F(1, 20) = 6.703, p = 0.017, ηp

2 = 0.251]. Despite the observed
increase due to training with combined data from both con-
texts, there is still a significant decrease of performance of about
1.2% relative to training and testing on the same context [t(20) =
−3.526, p < 0.01].

For frequency- and time-domain features combined, we
observed an increase of classifier performance between single
(mean = 76.7 ± 7.6%) and combined context training (mean
= 75.2 ± 8.1%) with [F(1, 20) = 6.306, p = 0.021, ηp

2 = 0.240].
There is no difference between testing on the (optimal) same
context vs. combined testing.

Summarizing, for those classifiers trained with frequency-
domain and combined frequency- and time-domain features,
training on combined contexts leads to an increase of perfor-
mance comparable with (optimal) same context training and
testing. For classifiers trained with time-domain features only, we
observe a significant increase of classification performance when
training on combined context, but there is still a loss of per-
formance compared to the (optimal) same context training and
testing. Since the number of trials for both conditions are kept
equal, this is evidence for a gain in resilience of the workload clas-
sifier against contextual changes, especially for classifiers based on
frequency-domain features.

DISCUSSION
If we want to create passive brain-computer interfaces that work
in the wild, we need to take the variability of such environments
into account. To test how well a workload classifier would be able
to cope with variability due to changes in affective context, we
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trained it on the data from a subject performing a task under the
evaluative pressure of an impending interview, the same subject
in a non-stressful setting, and from both contexts.

We validated the experimental protocol using subjective
and objective indicators of the psychophysiological activation
expected due to stress/relaxation induction and different work-
load levels. Though we did not see a significant difference in
the perceived arousal measure (SAM), higher values for the STAI
and increased sympathetic nervous system activity (as indicated
by significant differences for GSR and a trend for HR) support
a successful induction of anxiety in the stressful compared to
the non-stressful condition. Higher perceived arousal and mental
demand, higher sympathetic nervous system activity (as indexed
by HR) as well as lower behavioral performance for high com-
pared to low workload levels support the efficacy of the workload
induction paradigm.

We showed that workload can be classified on the basis of 2 s
of neurophysiological signals with an accuracy of 76.1%. This is
comparable to previously reported results for such short intervals
of data (Grimes et al., 2008; Brouwer et al., 2012). It was shown
that the accuracy can be increased using decision-level fusion over
the results of several trials (Brouwer et al., 2012) or simply by
using longer signal epochs (Grimes et al., 2008), however, with the
tradeoff of a less fine-grained, more discrete, and lagging measure
of workload. We observed a similar increase of classifier perfor-
mance to between 94.4% and 96% using a majority vote based on
the classifier outcome of the relevant 45 trials of a given block.

While the source of information measured via EEG, neuronal
or myographical, might seem of no immediate significance for
an application on able-bodied users, it seems relevant to us to
ensure that we indeed measure the neural activity implied by
pBCI. In this regard, it is noteworthy that the distribution of
relevant frequencies vary between subjects. While in general the
majority of features (65%) is selected from low frequency bands
(delta, theta, alpha), some subjects have a strong contribution of
high frequencies (beta, gamma, gamma2) up to 50%. Since these
higher frequency bands are notorious for their response to muscle
activity in addition to neuronal information (Goncharova et al.,
2003), we tested if the workload classification would suffer con-
siderably when excluding them from the feature pool. The average
performance did indeed decrease slightly to 74.2%. However,
the highly significant above-chance performance over all subjects
indicates an only marginal role of muscular activity in workload
estimation3. This is in line with other studies that suggest a rel-
evance of low frequency bands for workload (Jensen et al., 2002;
Jensen and Tesche, 2002) and its estimation (Zarjam et al., 2013).
Consequently, we showed that the trained classifier uses the neu-
ral correlates of workload to discern two workload levels with a
performance equaling that reported in similar studies.

Regarding the classifier generalization to different affective
contexts, we show that a classifier created in a non-stressful
context can generalize to a stressful context and vice versa.
However, the training context has a significant influence on
the classification performance, with decreasing performance

3Alternatively, the decrease might be due to the removal of relevant neural
information represented in beta or gamma bands.

for cross-context classification (i.e., from 72.4% to 69.4% for
frequency-domain features, from 73.3% to 69.1% for time-
domain features, and from 77.3% to 73.2% for features from both
domains). Interestingly, we found that a training which takes sev-
eral relevant contexts into account enables the generalization of
the classifier to a certain degree. Classifiers based on frequency-
domain and on combined frequency- and time-domain features
perform comparably well after training with data from both affec-
tive context (72.4% and 76.7%, respectively) as after being trained
and tested within a specific context. Classifiers based on time-
domain features profit as well from a training with data from both
affective contexts (72.1%), but still show a declined performance
relative to optimal, within-context training and testing.

The current study is limited in its generality by the use of a
stress induction paradigm which manipulates affective context
only once. We chose the TSST because it is a recognized standard
of social stress induction and a powerful elicitor that allows to
keep stimuli and task comparable during the workload session of
stressful and non-stressful condition. However, since we have only
two stress conditions and not several interleaved stress conditions,
the stress manipulation is synonymous with a change in time,
though with a counter-balanced order. Both affective contexts are
separated by at least 10 min and we can not exclude that signal
changes with time played a role for classifier performance. The
analysis of effects of time within the affective contexts, however,
did not reveal general performance decreases due to time pass-
ing and thus adds to the evidence of context-related performance
loss. Similarly, the spread of training blocks over a larger time
in combined compared to single testing contexts limits compa-
rability of both performance measures. To ensure that our results
hold for stress in specific, interleaved stress induction methods
can be used, though a viable experiment length, reliability of
stress induction, and comparability of stimuli and task need to
be guaranteed.

Another limitation of the paradigm can result from a potential
interaction of (psychosocial) stress and workload. For example,
impaired cognitive processes or increased engagement in the face
of evaluative pressure, could lead to differences in participant
performance between affective contexts (Eysenck and Derakshan,
2011). Despite the lack of such interaction effects in our analy-
sis, the possibility of participant’s performance-related differences
being reflected in brain activity is a general issue that needs
to be considered, since such changes in brain activity would
be only indirectly related to stress. Therefore, future research
needs to identify the processes that are responsible for the sig-
nal variability in the face of psychosocial stress. On a related
note, other stressors could be manipulated to identify the source
of the performance decrease, for example in terms of impaired
cognitive processes.

The result of our study suggests that classification perfor-
mance for passive BCIs can be increased using not only a larger
quantity of training data, but by introducing qualitative varia-
tions. Here, we varied the stress level of our participants during
the task performance. This manipulation is comparable to the
variation of the affective context of a task in real-world scenar-
ios, for example task performance under pressure vs. normal
task performance. Consequently, to create more reliable BCIs for
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workload detection, robust against alterations in contextual con-
ditions, such as affective factors (emotions, moods), the training
data should include data collected under the relevant contextual
conditions.

Zander and Jatzev (2012) found that certain metrics might
enable the identification of phases of changed contexts and there-
fore identify phases were additional calibration might be neces-
sary. One could then use transfer learning (Pan and Yang, 2010)
or other re-calibration strategies to enable an adaptation of the
transfer algorithm to the new context. However, the suggested
metric specifically enables the detection of LOC, which is use-
ful for the detection of perceived LOC and subsequent reliability
decrease of active BCIs when environmental and internal factors
of the user change. Passive BCIs are not directly related to a feel-
ing of control since they do not enable nor aim at the intentional
control of machines. Therefore, for passive BCI one needs other
indicators of reliability.

Currently, several groups are investigating the cognitive, affec-
tive, and demographic factors that influence active BCI perfor-
mance (see Lotte et al., 2013). We argue that a similar research
program would allow to build more robust passive BCIs by (1)
taking into account changes in relevant contextual factors (e.g.,
stress), (2) by exploring indicators of such changes or the subse-
quent loss of reliability, and (3) by the exploration of strategies
to update the classifier in face of the loss of reliability due to
contextual changes.

CONCLUSION
The current work has relevance for the development of pas-
sive brain-computer interfaces that are able to specifically classify
one psychophysiological construct (e.g., workload), while being
invariant to others (e.g., stress). We devised and validated a pro-
tocol to test the effect of stress on pBCI approaches. We showed
that a classifier has trouble transfering from stressful training data
to non-stressful test data and vice versa, indicating an influence of
affective task context on the performance of a workload classifier.
Moreover, we found that the classification profits from the train-
ing on a mix of the varied affective task contexts. Such classifiers
perform comparably well to those trained and tested on the same
affective context. More generally spoken, the results suggest that
the classification performance is not only dependent on quantita-
tive factors, such as the numbers of channels, amount of training
data, or length of trials, but also on qualitative factors, such as
the affective context. This underlines the need for studies that
identify such contextual factors and that elucidate ways to deal
with detrimental effects related to their influence. Future research
and development of workload classification systems using phys-
iological sensors needs to take the contextual factors into
account to increase the generality and ecological validity of the
system.
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More specifically, the following goals and questions were formulated: 
 

1. To investigate the effect of cognitive factors, specifically spatial abilities on MI-BCI performance. 
2. Do personality factors influence MI-BCI performance. 
3. How does the presentation and type of feedback affect BCI performance. 

 
Altogether 9 studies were carried out to address these questions and aims. 
 
 
Performance 
The thesis is surrounded by a thorough theoretical framework. At least parts of the theoretical 
background are thoroughly reviewed and the derived research questions clearly follow from this 
background. The integration of the results is remarkable.  
 
In more detail, the thesis comprises the following aspects and achievements: 
 

- Providing a theoretical background and delineating three research topics from it 
- Investigating the influence of cognitive aspects, namely spatial (mental rotation) abilities and 

attention, on BCI performance 
- Identifying and replicating cognitive predictors (mental rotation) of MI-BCI performance 
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and computer anxiety 
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- Introducing another feedback modality, namely tactile stimulation, into the MI-BCI approach 
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- Summary and critical discussion of the results 
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– far too often ignored in the BCI field and the way social interaction may support learning has not been 
systematically investigated. In this respect the thesis is truly outstanding. The introduction of a companion 
to assist BCI training is an interesting and appealing new idea and feedback on the appearance of the 
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feedback for motor learning was also nicely delineated from existing work and very well implemented into 
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of investigation is an important step in BCI development which only few investigators take and the 
implementation is in its most parts outstandingly well done.  
 
Limits: The most striking limit of the thesis is that recent research and progress toward integrating the 
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requirements of the targeted users and was standardized in the ISO 9241–210. The three aspects of 
usability – effectiveness, efficiency, and satisfaction – were adapted to BCI and metrics were suggested for 
each of these aspects and moreover, the framework is open to specific adaptation dependent on the 
application. The herein defined metrics are not taken into account, it is even stated that no standardized 
metrics exist, and thus, custom made questionnaires are used instead of validated existing ones; 
effectiveness and efficiency are equalised although they are two different aspects of usability. This is all 
the more striking as in other aspects of the thesis quite an immense number of literature is reviewed and 
integrated.  
 
With respect to the experiments, the lack of specific and clearly formulated hypotheses renders the 
evaluation of the results difficult including the statistical approaches. It often remains unclear what exactly 
are the independent and dependent variables and how many factors enter the analysis and the descriptive 
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Master SHS Sciences 

Cognitives et Ergonomie 

 

Responsable Pédagogique :    

Pr Bernard N’Kaoua  

  
 

 

   Bordeaux, le 19/12/2016 

 

 

 
Objet : soutien à la candidature de Camille Jeunet au prix de thèse IFRATH-KAELIS 2016 
 

 

 

Madame, Monsieur 

 

Camille Jeunet a obtenu à l’Université de Bordeaux, sa Licence en Mathématiques Appliquées aux Sciences 
Sociales avec mention bien (classée 3ème) et son Master en Sciences Cognitives avec mention très bien 
(classée 1ère). Durant son Master, elle a effectué une mobilité d’un semestre au Québec (note : A+). Elle 
s’est passionnée pour les interfaces cerveau-ordinateur dès son projet de fin de licence et a effectué 
plusieurs stages sur le sujet en cherchant à se familiariser avec différents points de vue, puisqu’elle a su 
alterner entre le milieu des sciences humaines, le milieu des neurosciences et le milieu 
informatique/interaction homme-machine. De 2013 à 2016, Camille a été doctorante au sein de l’Equipe 
Handicap Activité Cognition Santé (Université de Bordeaux) et de l’équipe Potioc (Inria Bordeaux Sud-
Ouest). Camille a obtenu une allocation de recherche Idex, allocation réservée aux meilleurs étudiants, 
après s’être classée seconde au concours de l’Ecole Doctorale Sociétés, Politique et Santé Publique. Elle a 
réalisé une thèse internationale en collaboration avec le « Interact Lab » (Université du Sussex, UK). 

Camille a mené son travail de thèse avec un dynamisme, une motivation et des compétences qui font d’elle 
une étudiante extrêmement brillante. Elle a soutenu sa thèse le 2 Décembre 2016 et le jury a reconnu les 
très grandes qualités scientifiques de Camille et le caractère novateur du travail qu’elle a réalisé dans le 
champ de la prise en compte du facteur humain dans les interfaces cerveau-ordinateur. Elle a déjà pu 
valoriser ses recherches par la rédaction d’articles scientifiques publiés dans des revues de très haut niveau 
international (PLoS Pne, Progress in Brain Research, Journal of Neural Engineering ou encore Frontiers in 
Neurosciences). Elle a également participé à de très nombreux congrès nationaux et internationaux, dont 
l’un (CJCSC 2015) qui lui a valu le Best Paper Award. 
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Camille a également une expérience conséquente d’enseignement (en tant que monitrice durant deux 
années) dispensée au sein de la licence MIASHS et du master en Sciences Cognitives et Ergonomie de 
l’Université de Bordeaux. Elle a également participé à l’organisation de 3 Workshops, expertisé des articles 
pour de nombreuses revues internationales (PLoS One, International Journal of Psychophysiology, etc.), et 
contribué à l’encadrement de nombreux étudiants de master. 

Enfin, en plus de son impressionnante activité scientifique, Camille s’est également impliquée dans des 
activités collectives en étant membre du comité des doctorants de l’école doctorale Sociétés, Politique, 
Santé Publique, ou encore Membre fondateur de l’Association des doctorants de l’EDSP2 et Trésorière de 
cette association pendant deux ans. 

Pour conclure, j’ai côtoyé Camille lors de sa licence (en tant qu’enseignant), de son master (en tant que 
responsable du master) et de son doctorat (en tant que co-encadrant de sa thèse).  Il s’agit d’une étudiante 
que l’on peut qualifier d’exceptionnelle tant par son dynamisme et ses compétences  (comme en témoigne 
son impressionnante épreuve de titre) que par ses qualités humaines qui en font une collaboratrice 
appréciée de tous. 

Pour toutes ces raisons, je soutiens sans réserve la candidature de Camille Jeunet au prix de thèse IFRATH-
KAELIS 2016. 
 

Bien cordialement 

 

Bernard N’Kaoua 
Laboratoire Handicap Activité Cognition Santé  
Equipe Phoenix Inria Bordeaux Sud-Ouest 
Co-Responsable du Master Sciences Cognitives et Ergonomie 
Directeur de l’école doctorale sociétés, Politique et Santé Publique 
 



Fabien LOTTE, PhD 

Inria Bordeaux Sud-Ouest 

200 avenue de la vieille tour 

33405, Talence Cedex, France 

fabien.lotte@inria.fr 

http://sites.google.com/site/fabienlotte/ 

 

Recommendation letter for Camille Jeunet 

 

To whom it may concern, 

  
I had the opportunity to start working with Camille Jeunet in February 2013, when I co-supervised 

her Master Thesis with Dr. Christian Mühl. She was working on stress monitoring in brain signals with us. 
I have been working with her since then. Indeed, after her Master Thesis, Camille started a PhD with me 
(that I co-directed with Dr. Martin Hachet, Pr. Bernard N’Kaoua, Pr. Sriram Subramanian) in October 2013. 
The domain of her PhD was Brain-Computer Interfaces (BCIs), which are communication and control tools 
that enable people to send commands to a computer by using brain activity only. For instance, a BCI can 
enable a user to move a cursor on a computer screen towards the left or right, by imagining left or right 
hand movements, respectively. As such, BCIs are very promising technologies for severely motor impaired 
users, as they can be used to controlled assistive devices such as wheelchairs, prostheses and spellers 
without any physical activity. Unfortunately, BCIs are still barely used outside laboratories, because they 
are not yet reliable: they often erroneously recognize the mental commands sent by the user. Bringing 
BCIs to motor impaired users thus requires to improve their reliability. Camille’s PhD address this issue in 
a very original way: rather than focusing on brain signals decoding, which most of the BCI community is 
doing, she studied the user in the loop and how to efficiently train BCI users to gain control of the BCI, to 
produce reliable mental commands. Her PhD aimed at understanding BCI control skill acquisition and at 
proposing new training approaches for BCI, in order to improve their reliability, which is needed to make 
them usable by motor impaired users.  

 
 Overall, I consider myself very fortunate to have had the chance to work with Camille, as she is 
really an exceptional scientist and collaborator. Camille is very hard working, organized, autonomous, 
rigorous and with a high sense of integrity. She is also scientifically curious and willing to learn new things, 
and she does not hesitate to seek by herself relevant help and collaborators to complement her own skills 
and perform even higher quality research. This results in a very impressive scientific productivity, with 
Camille having already published, 4 journal publications in high quality journals (PLOS One, Frontiers in 
Neurosciences, Progress in Brain Research, Journal of Neural Engineering, all with impact factors higher 
than 3), 1 book chapter and 9 peer-reviewed international conference papers (including a best-paper 
award). More importantly than this important quantity of research, the quality of the research produced 
by Camille is to be noted, as her work revealed some very important links between BCI users profile and 
cognitive abilities, and their skills at BCI control. Her work also contributed a first model of BCI control 
performance, and thus a clearer and theoretically grounded understanding of BCI skills. Based on this 
understanding, she also proposed, implemented and evaluated several new methods, feedback and 
training tasks that actually improved BCI user training and/or user experience during training. Her 
exceptional work opened the door to many new research directions and applications of BCIs. In particular, 
based on her results, Camille and I started to work with Bordeaux hospital, to use BCI with motor impaired 
users, for post-stroke rehabilitation. The results obtained from her PhD also form an excellent basis to 
further improve BCIs and make them finally reliable. I notably recently obtained an ERC starting grant for 

mailto:fabien.lotte@inria.fr
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the project BrainConquest (2017-2021), which is a direct follow-up on Camille thesis. This project indeed 
aims at developing models and tools to understand and drastically improve BCI user training, to make 
them finally efficient and usable in everyday life by motor impaired users. 
 
 In addition to scientific works, Camille is also very active in scientific animation, including teaching, 
scientific mediation and outreach as well as workshops organization. She notably teaches in cognitive 
sciences and mathematics and computer sciences applied to social sciences, for instance classes in Human-
Computer Interaction and Human Factors. Her dedication to teaching and her original approach enabled 
her to won the “best teacher award” from Bachelor students. She is also regularly giving popularization 
talks on BCI, for which she even won an audience prize and a jury prize for the French “3 minutes thesis” 
competition. Finally, she is also very active in organizing scientific events and workshops, such as 
popularization events, scientific workshops and debates within the lab, and she even co-organizes 
scientific special sessions in international conferences. She notably co-organized two special sessions on 
BCIs as part of the IEEE System Man and Cybernetics international conference series. 
 
 Finally, as a person, Camille is extremely enjoyable to work with. She very friendly, easy to talk to, 
funny and kind. She is also very rational, and has an objective view of her strengths and weaknesses, which 
makes debates and work discussions with her constructive and efficient. 
 

For all these reasons, I am therefore very happy to recommend Camille Jeunet for a PhD thesis 
award from the IFRATH, as her PhD work is clearly an important landmark in the research and development 
of BCIs and their future use by motor impaired people. Such a prize would also certainly contribute to 
make Camille able to pursue her work in the field, as it will certainly help her to obtain an associate-
professor or research scientist position on BCI, which she is very passionate about. I am actually confident 
that Camille will become a major scientific actor in the field of Brain-Computer Interfaces research and 
assistive technologies in the future.  

 
Please don’t hesitate to contact me if you need any additional information. 

Best regards,        

Fabien LOTTE 
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