
Reconciling user and designer preferences in adapting

web pages for people with low vision

Comparing NSGA-II and NSGA-III evolutionary algorithms

Yoann Bonavero Marianne Huchard Michel Meynard

LIRMM LIRMM LIRMM

CNRS & Montpellier University CNRS & Montpellier University CNRS & Montpellier University

Montpellier, France Montpellier, France Montpellier, France

bonavero@lirmm.fr huchard@lirmm.fr meynard@lirmm.fr

ABSTRACT
The web has become a major tool for communication, services and
an outstanding source of knowledge. It has also grown in com­
plexity, and end-users may experience difficulties in reading and
acquiring good understanding of some overly complex or poorly
designed web pages. This observation is even more valid for people
with visual disabilities. In this paper, we focus on people with low
or weakening vision, for whom we propose to adapt web pages to
their needs, while preserving the spirit of the original design. In this
context, obtaining a web page adaptation in a very short time may
be a difficult problem, because user and designer needs and prefer­
ences may contradict each other, and because there may be a large
number of adaptation possibilities. Finding a relevant adaptation in
a large search space can hardly be done by an algorithm which com­
putes and assesses all possible solutions, which brings us to con­
sider evolutionary algorithms. A characteristic of our problem is to
consider a set of preferences, each being implemented by an evalu­
ation function. This optimization problem can be dealt with multi­
objective genetic algorithms, including the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) and its next version (NSGA-III).
NSGA-III has been recently introduced to address many-objective
optimization problems (having more that four objectives). We com­
pare NSGA-II and NSGA-III performances in the context of adapt­
ing web pages in accordance to a set of preferences. The compar­
ison is based on running time, number of generations and quality
of computed adaptation (number of satisfied objectives). We also
show the importance of several parameters including population
size, crossover/mutation probability, and the opportunity to aggre­
gate objective functions. From the obtained results, we conclude
that the approach is feasible and effective on realistic web pages,
especially with NSGA-III.

Keywords
e-accessibility, web page personalization, visually impaired, low
vision, evolutionary algorithm, NSGA-II, NSGA-III

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita­
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re­
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
W4A ’15, May 18 - 20, 2015, Florence, Italy
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3342-9/15/05...$15.00
http://dx.doi.org/10.1145/2745555.2746647.

1. INTRODUCTION
The world wide web is meeting a great success in increasing

communication, providing services and disseminating knowledge.
These opportunities are supported by the constant evolution of soft­
ware and hardware technologies.

In the web world, the highly and constantly increasing band­
width and the wide use of high-resolution screens, encourage devel­
opers and designers to enrich their websites regardless the web page
complexity. In addition, designers propose more and more complex
and rich graphic charts. Today, aesthetics and appearance are of
great importance, sometimes even compared to website function­
alities. Web browsing is becoming a visual experience for a large
part of end-users. Pages are colorful, contain many images and use
complex element positioning systems and organization layout.

However, this evolution may have a negative impact, especially
for people with disabilities. Visually impaired people are very af­
fected by such rich page design. Colorful websites, or web pages
using color to convey information, may generate some difficulties
for color-blind people. Not providing alternative text into an image
containing textual data is a major barrier for blind people in ac­
cessing potentially important information. Artistic font family, and
non-regular text style, may lead to reading difficulties for people
with dyslexia. With very high-resolution screens, graphical inter­
faces may have tiny fonts which may be a problem, not only for old
and disabled people.

Many countries are adopting treaties or laws in order to enhance
digital accessibility. In some countries, e-accessibility is consid­
ered as a citizens’ right and is a very important issue. Worldwide,
about 246 million people are visually impaired and 39 million peo­
ple are blind [39]. Mainly due to the increasing life expectancy,
these figures are constantly growing.

Current assistive technologies, like JAWS or MAGic [6], Window-
Eyes [11], VoiceOver [10], that are widely used, may address some
accessibility issues. Some are included in (or a companion of) op­
erating systems, such as Mac OS X [3], Windows 8 [2], Android
[1] or Linux [7, 8]. In the low vision context, screen magnifiers
are helpful to improve text readability and visualization of parts of
a web page. There exist several commercial and non commercial
software, such as “Enhanced desktop zoom” (Compiz accessibil­
ity plugin) or Orca for Linux, screen magnifier solution of Mac
OS, and Magic or Zoomtext for Windows. They allow end-users
to apply color filters on the screen, to modify the arrow and cursor,
or to zoom in the screen to obtain a better view on specific parts.
Nevertheless, due to high maintenance cost and very specific needs
of end-users, assistive technologies only provide a set of generic
tools that hardly meet the need of specific adaptation. Web browser

http://dx.doi.org/10.1145/2745555.2746647
mailto:Permissions@acm.org
mailto:meynard@lirmm.fr
mailto:huchard@lirmm.fr
mailto:bonavero@lirmm.fr

options have also been proposed [4, 9]. The page style can be com­
pletely redefined, which may cause the complete loss of the initial
design, and these tools also propose a set of generic and global
modifications.

Independently of tools, accessibility standards have been pro­
posed. The W3C (World Wide Web Consortium) and other orga­
nizations publish sets of technical specifications in order to guide
accessible website development. The compliance to these specifi­
cations provides a minimum level of accessibility, for people who
do not use the often expensive assistive technologies. Besides, they
guarantee a satisfactory access to third-party software. Specifica­
tions are divided into three main guidelines including WCAG 2.0
(Web Content Accessibility Guideline [43]), UAAG (User Agent
Accessibility Guideline [41]) or ATAG (Authoring tool Accessi­
bility Guideline [40]). WAI - ARIA (Web Accessibility Initiative ­
Accessible Rich Internet Application [42]) is specialized in rich and
dynamic interfaces (for example Javascript web user interfaces).
Nevertheless, despite the efforts of some developers to comply with
the standards, many websites have a low level of accessibility be­
cause the standards are too broad [36].

Other approaches propose more personalized web page adapta­
tion. Some are dedicated to specific deficiencies, like color-blind­
ness in [36]. They often only consider low-level elements in the
web page like [37, 13] and simple description of end-user needs or
no description at all.

In this paper, we aim to consider end-user preferences, but also
designer preferences, that may be more or less complex and be ex­
pressed on properties of elements of the page. For example we may
want all backgrounds in the page with a similar brightness, a min­
imal contrast between a specific text and its background, and keep
colors as close as possible to the original colors. Such preferences
may contradict each other, leading to a large number of adapta­
tion possibilities. To explore this possibly large space of solutions
in a very short time, we consider evolutionary algorithms. Be­
sides, as we consider a set of preferences, we choose to use multi­
objective evolutionary algorithms, which produce optimal solutions
that make trade-offs between the preferences. In a previous work
[14], we proposed an approach based on the Non-dominated Sort­
ing Genetic Algorithm II (NSGA-II), that we tested on a set of web-
sites to check its feasibility. The study showed the benefits but also
the limits of the approach regarding running time and the number
of satisfied preferences. A variant of NSGA-II, namely NSGA-III,
has been recently introduced to specifically address many-objective
optimization problems (having more than four objectives). As we
may have many preferences, we carry out a new study to investigate
the potential benefits brought by NSGA-III. We compare NSGA-II
and NSGA-III running time, number of generations and of satisfied
objectives. We study the effect of parameters including population
size, crossover and mutation probability, and the impact of aggre­
gating objective functions.

Section 2 describes research work that aims to improve web ac­
cessibility for low vision users. In Section 3, we illustrate and out­
line our approach on an actual web page. Then, we present in Sec­
tion 4 the principles of preference representation and of the multi­
objective evolutionary algorithms. Section 5 presents how we are
encoding our problem and how we are tuning the algorithms to ob­
tain satisfactory results. Section 6 reports and discusses the results,
and we conclude in Section 7 with perspectives of our work.

2. EXISTING APPROACHES
Nowadays web page adaptation is addressed by commercial as­

sistive tools, dedicated configurations in operating systems, web
browser extensions, and by research work that aims to take better

account of user needs and preferences. Some approaches deal with
specific deficiencies like color vision deficiency [36] [38], while in
our case, we aim to propose a general solution for low vision users.

As mentioned in [34], architectures of the proposed prototypes
divide into client-side [34, 36, 13], proxy-based [37], host-content­
server-side, web page [12] or web-service. The tool can be intended
for end-user only [36, 34, 32, 37], for the designer [32], for an
assistive tool [30, 31, 25] or for multiple recipients [13, 12]. Our
prototype tool is designed to be used on the client-side and targets
the end-users.

The proposed approaches deal with different kinds of elements.
Some only consider basic elements such as specific text, color or
background [36, 37], while others focus on structure and roles of
the elements, such as lists, menus, sections, fields or titles [30,
31, 25]. For example, in [25], labels are assigned to form fields
by probabilistic optimization approach, in order to ease the read­
ing and filling of the fields. Besides, more advanced approaches
propose their own meta-model or language [32, 30] to be able to
manipulate high-level abstractions. In our case, we let the users ex­
press their preferences at several levels of abstraction, using vari­
ables that describe pairs composed of one relevant element of any
kind, and one possibly complex property. A preference is any
evaluable function expressed on variables and their domains. Be­
sides we take into account designer preferences by the mean of
evaluable functions. Approaches that deal with higher level ele­
ments often need procedures to recognize them. This is done for
example with pattern recognition and source code analysis in [32].

During the transcoding, the modified elements often are HTML
[30, 37] and CSS rules [13, 34], but may also be scripts, under
some conditions [34, 36]. In [31], the web content is enriched with
CNR (Content Navigation Rules) by introducing ARIA statements.
This allows the user to navigate using the screen reader and key
presses. In [12], alternative text is automatically produced either
by Optical Character Recognition from a picture or by decoding an
image URL. The modifications may consider the whole web page
[36], or only specific parts [20, 21, 33]. In our proposal, we modify
the whole web page.

The user profile can be a set of expected values for some char­
acteristics, like font or color [37, 36, 33]. The user profile may
be predefined for user categories known in advance, as hyposight
and different color blindness kinds in [36]. This user profile can
be entered by the user via an interface, giving values for the char­
acteristics [37, 34] or from visual tests [22]. In a more innovative
approach [20, 21, 33], the user profile is learned from user actions
and Q-learning. In this paper, we do not address the user profile
acquisition, which we will consider in a future work.

Depending the form of the user profile, the adaptation step can
take different forms. In [36], authors apply the predefined profile;
in [33], the learned profile is applied. In Cloud4all project [5], par­
ticipants work on a Global Public Inclusive Infrastructure (GPII),
which will allow a user profile to be easily implemented to person­
alize any device and content. In our case, as our preference set may
contain conflicting preferences, a trade-off has to be found between
the preferences. This is done by using a meta-heuristic algorithm
in order to get a good approximate solution.

Some approaches propose at the same time adaptations and met­
rics to judge the result [36] or to guide the process [25]. In the
evolutionary algorithms, we use objective functions, that can be
considered as metrics, to guide the search.

Concerning the respect of the designer preferences, we incorpo­
rate them in our constraint set, potentially increasing conflicts be­
tween preferences (let us note that such conflicts can happen even
between the user preferences). In [20, 21, 33], authors make lo­

cal changes to the web page, which has the effect of keeping the
designer preferences on the unaltered parts. To our knowledge, the
other approaches do not consider this aspect, and transcode the web
page only on the basis of the user preferences.

3.	 ADAPTING WEB PAGE WITH COMBINED
USER AND DESIGNER PREFERENCES

In this section, we outline our approach on a realistic example
inspired by the website of an e-commerce platform, this website is
represented in Figure 1. This website is very colorful, and for some
users, contrasts are not high enough, especially in main menu tabs.

In this colorful context, our first user preference is defined by
a minimal contrast between text and background, in order to in­
crease readability of pages. Moreover, we define a maximal dis­
tance between the original color context and the computed one in
order to keep as much as possible the designer preference. We aim
to compute web page adaptation that makes a trade-off between
the user preference (minimal brightness contrast) and the designer
preference (original colors). One of the best adaptations that our
approach computes is shown in Figure 2.

Figure 1: Part of original “Lorem Ipsum” home page with “All
products” tab opened.

Figure 2: Adapted “Lorem Ipsum” home page with “All products”
tab opened - minimal contrast is ensured, and color context is pre­
served as much as possible.

The approach is based on the complete or partial knowledge of
the HTML source code of the page we want to adapt. It considers
low-level structural elements like paragraphs, links or titles as well
as higher level structural elements like header, footer, article, menu

or navigation bar. These high-level structural elements are indi­
cated to a large extent by tags in HTML 5 and Accessibility Rich
Internet Applications (ARIA [42]) standards. In addition, we as­
sociate relations between the structural element features. HTML
5 and ARIA are not required, but in the case of older versions
of HTML, it is needed to add some recognition process to extract
high-level structural information. If we consider the preference “if
text font size is 12pt, the title font size must be at least 16pt font
size”, a relation is established between the font size feature of the
two elements (text and title). If we consider a preference involving
higher-level structural elements, such as “In articles, the summary
should be highlighted to the content”, a relation is established be­
tween the writing style of the summary and the main content of the
same article.

When a page is loaded into the web browser, we get all HTML
elements and their features concerned by the currently defined pref­
erences. The tasks of getting high-level HTML elements when the
page is loaded and applying new property values currently are man­
ually done and doing it automatically is an on-going work. These
tasks require indeed complex page decomposition with clever struc­
ture recognition algorithms that are able to capture the perception
of the page by the end-user [17, 16]. In this paper, we focus on
computing a relevant adaptation, given the HTML elements and
their properties. Even on medium size pages (in terms of HTML
elements), this is a difficult problem which can hardly be dealt with
an exact solution, as we show in [15] with approaches from Pref­
erence Theory [27]. To face this complexity problem, we imple­
ment and tune multi-objective genetic algorithms. Making a trade­
off between all preferences, these algorithms search for good adap­
tations and give results in acceptable running time. Then, we apply
the new (computed) property values to the appropriate HTML ele­
ments. The next section explains our problem into more details and
describes the two algorithms used, that we will compare on real
web pages.

4.	 PROBLEM AND RESOLUTION
We describe here the problem we want to solve, how preferences

are represented and the resolution algorithms used.

4.1 Problem definition
The main purpose of the page processing is to modify a web page

regarding designer and user preferences. These preferences may
come from users with disabilities that express their needs through
preferences or may come from non disabled persons who want to
improve the page appearance (or just for fun). We get the set of
HTML elements and their associated properties related to the de­
fined preferences. As a result, the size of the built set depends on
the nature of the website (in terms of architecture and number of el­
ements) and also on the kind of defined preferences. From HTML
elements and their properties, we create a set of variation points,
that we call variables (Eq. (1)). Each variable associates a property
with its HTML element and has a domain of values. For instance,
a variation point or variable can be “color of menu background”,
“font size of links”, or “level 3 title font family”.

V ariationP oints = {V1, V2, .., Vm} (1)

Our aim is to find a value for each variable to satisfy at the same
time all preferences. Thus preferences are represented by relations
linking variables. The problem definition and the chosen resolution
algorithms are driven by the desire to keep this choice as indepen­
dent as possible from any specific web page or preference.

4.2 Preference representation
Preferences connect variables. A constraint is the instantiation

of a preference kind on particular variables. For example the pref­
erence kind defining minimal contrast between text and its direct
background is instantiated for each textual HTML element.

Constraints = {C1, C2, .., Ck } (2)

All choices made on one or more variables constitute preferences
or wishes. This is different from most of the existing work dealing
with user preferences. For example, in [35], literal values like 10 pt
or 16pt for a font size, blue or yellow for a color are object proper­
ties. Instead, in our approach we use constraints between variables.

We use basic preference (Eq. (3)) and conditional preference
(Eq. (7)) representation from Preference Theory [27]. Furthermore
we expand them to hold “more complex” preferences.

Vi op xi >p Vj op yj (3)

In Eq. (3), Vi and Vj are two variables (with possibly Vi = Vj),
>p the preference symbol (A >p B means A preferred to B), op
is an operator like = and xi (resp. xj) is a value in the domain of
Vi (resp. Vj). To represent the user’s wish “I prefer green color for
links to blue one”, we define the variable cL to represent the color
of links (L is the link set). The cL domain is denoted by D(cL) in
Eq. (4).

D(cL) = {black, red, blue, yellow, purple, green} (4)

The user’s wish is expressed as in Eq. (5).

cL = green >p cL = blue (5)

Conditional preference form is shown in Eq. (6).

Vk op xk : Vi op xi >p Vj op yj (6)

For example, in Eq. (7), we model the following preference: “If the
font color is yellow, I prefer bold font to regular font”. To represent
the weight of the text concerned by this preference, we introduce
a new variable wT . The operator ":" appears here to indicate the
condition and the action to be done if the condition is satisfied.
This representation was considered in our previous paper [15].

cT = yellow : wT = bold >p wT = normal (7)

Furthermore, we consider any complex function on variables
and their domain values. With these considerations, we can ex­
press preferences like “I would like to have a text font size greater
than 12pt”, “I would like to have black text if its size is less than
10pt” or “I would like to have a minimal brightness contrast of 30%
between texts and their direct backgrounds”. The brightness con­
trast is a binary function that represents the distance between color
brightness of two objects. To model this last preference, we cre­
ate the object T representing a textual element and the object B
for its direct background. From these objects we define two vari­
ables cT and cB to represent the text element color and the back­
ground element color. Then, we define a brightness contrast func­
tion contrast(x, y). This binary function takes as parameter the
two colors and returns the value of their brightness contrast. The
result of this function is compared with a threshold specified by the
user. To determine the satisfaction of a constraint, we evaluate Eq.
(8) where l is the desired threshold.

contrast(cT , cB) ≥ l (8)

4.3 Resolution algorithm
As said previously, the number of HTML elements in a web page

multiplied by the number of considered properties can be poten­
tially huge, and so is the number of solutions to an adaptation prob­
lem. Functions like contrast or lightness are not hard to compute
for each solution, however the search space size makes impossible
the use of exact algorithms. This motivated us to use an optimiza­
tion algorithm. For example, in our smallest studied website, with 9
color variables, and with only 3 values for each red, green, and blue
color components, we obtain about 7.6 × 1012 solutions that can­
not be computed on standard computer with exact algorithms. Let
us remark that this drastic domain reduction reduces the number of
good solutions and may even remove all good solutions.

When there is no solution satisfying all constraints, we are in­
terested in finding approximate solutions. Regarding the nature
of the problem and its multi-objective dimension (several prefer­
ences and then constraints), we considered multi-objective evolu­
tionary algorithms [24, 28, 44]. We firstly used the Non-dominated
Sorting Genetic Algorithm II (NSGA-II), which gave us accept­
able results on some websites. Recently, a new version has been
proposed (NSGA-III), which may be more adapted to our specific
case, where we have many objective functions (connected to many
preferences). NSGA-III is still in early stage, while NSGA-II is
popular in search based software engineering [23].

NSGA-II [18] considers an initial (possibly randomly built) pop­
ulation P0 of N solutions (or individuals). Pt is step t population.
An offspring population Qt of size N is created from Pt individ­
uals using selection, crossover and mutation operators. Pt and Qt

are merged to constitute Rt population. The N best individuals
of Rt in terms of non-dominance and diversity are kept to form
Pt+1 as follows. Several fronts are calculated that group solutions.
The first non-dominated front (F1) groups non-dominated individ­
uals (that correspond to the best known solutions) with regard to
at least one objective. We state that a solution s1 dominates an­
other solution s2 if: (i) s1 is better than s2 in all objectives, and
(ii) s1 is strictly better than s2 in at least one objective. The second
non-dominated front (F2) gathers the non-dominated individuals
of Rt \ F1. The third non-dominated front (F3) gathers the non­
dominated individuals of Rt \ (F1 ∪ F2), etc. The Pt+1 population
is composed of the k first fronts whose union has less than N ele­
ments. Then to get N elements, the Pt+1 population is filled with
individuals selected in k + 1 front, based on a crowding distance
[29] and a binary tournament selection operator. The crowding dis­
tance is used to select solutions that have the lowest densities of
surrounding solutions. For a given solution s, this is measured as
the average distance of the nearest solutions (neighbors of s) along
each of the objectives. The resulting crowded-comparison operator
is used to select scattered solutions. These steps are repeated until
some stopping criteria are satisfied.

NSGA-III [19, 26] differs from NSGA-II in the selection proce­
dures and the point where they occur in the algorithm.

In NSGA-II, cross-over and mutation operators are applied to a
selected part of the current population. This selection is made by
binary tournaments. Two individuals are repeatedly randomly se­
lected in the current population and the best in terms of crowding
distance and rank is kept. In NSGA III, all individuals of the current
population have equal chance to be crossed or mutated (no prior se­
lection). When the current population has N individuals, applica­
tion of cross-over and mutation operators produces N individuals
(offspring population). The obtained 2N individuals (current popu­
lation and offspring population) are sorted in non-dominated fronts
and the k first fronts whose union has less than N elements are
included in the next population (as in NSGA II). If the new popula­

tion did not meet N individuals, the remaining individuals have to
be picked in the k + 1 front (denoted by Fl for "Last Front"). The
underlying idea is to favor diversity (choosing individuals that are
isolated in the objective function value space). While in NSGA II it
is based on the crowding distance between Fl individuals, NSGA­
III uses a different strategy for preserving diversity which is based
on reference points on the whole population.

The reference points are uniformly distributed on the M dimen­
sional space where M is the number of objectives functions that
are normalized. The number of reference points depends on the
number of divisions that are chosen for each axis. The number of
divisions is a parameter of the algorithm. A systematic method can
consider the M dimensional space where each axis represents the
values of one normalized objective function. Normalization con­
sists here to bring the values between 0 and 1. We build the hyper­
plane by connecting the 1 value of each objective function (axis).
The reference points are uniformly placed on this hyper-plane. In
the very simplified case of 3 objective functions and 2 divisions,
we obtain a triangle where vertices have coordinates (1, 0, 0), (0,
1, 0) and (0, 0, 1), Reference points are obtained by dividing each
triangle segment in two parts. This gives 6 reference points (one
for each apex and one for each segment center). With 3 divisions,
we obtain 10 reference points because the triangle surface also has
reference points uniformly placed on it. Individuals are then asso­
ciated to a reference point as follows. The half straight line con­
necting the coordinate marker origin to a reference point is called
a reference line. We compute the perpendicular distance between
an individual and each reference line. The individual is associ­
ated with the reference point corresponding to its closest reference
line. For each reference point, the algorithm counts the number of
individuals of the k first fronts that are associated with it. Each
individual of last front Fl is associated to a reference point as a po­
tential individual for the selection. Then for choosing an individual
in Fl for filling the next population, the algorithm looks for the first
found reference point which has the smallest individual count. If
the reference point has at least one associated individual in Fl, the
closest individual is chosen and added to the population. This is
repeated until the next population (under construction) has N indi­
viduals.

5. COMPARISON SETUP
In this section, we describe the experimental setup that we will

use to compare NSGA-II and NSGA-III .
The websites included in the dataset have been chosen to keep

as much as possible a diversity in terms of number of HTML el­
ements, number of used colors and because they may cause read­
ability issues for people with disabilities. Website element number
varies from dozen to hundreds of elements.

Due to the non determinism of the studied algorithms (crossover
and mutation operators are indeed stochastic techniques), we repeat
many times each configuration in order to smooth random effects.
Configurations include variation of the population size, aggregation
of objective functions or not, stopping criteria, preference sets, etc.

In order to remain in the framework of our previous results [14]
and increase confidence in the results, we use similar global con­
figurations described in Table 1. For each configuration, we run the
algorithm 30 times to reduce random effect impacts. The number of
generations is not our stopping criterion, unlike usual practice. We
decided to stop an execution either if we have a solution that satis-
fies all the preferences, or if execution lasts more than 10 seconds.
These two stopping criteria are combined to many other measure­
ments to compute comparison tables in Section 6. For this experi­
ment, we defined three general preferences, which match practical

problems for people with low vision.

• GP1 : Have an uniform global background color brightness.

•	 GP2 : Have a minimal contrast between the text and its direct
background.

• GP3 : Substitute an original color with a close one.

When we associate a general preference GPi to a specific web-
site, we obtain many preferences Pi corresponding to each element
or element group on which the preference can be applied. For
example, considering the last general preference GP3 (Substitute
an original color with a close one), if n colored elements on the
page have a chance to be modified, we will obtain n preferences.
When this preference is defined/selected by the user, each element
included in the adaptation process is linked to its original color by a
function comparing the distance with new color. The second pref­
erence GP2 (requesting a minimal contrast between text and direct
background) is defined to get a minimal brightness contrast for each
text on a page regarding its background. The brightness used in the
contrast computation is the relative perceived brightness defined in
WCAG 2.0 [43]. This constraint is used to increase the readability
of documents. The uniform background brightness general pref­
erence GP1 is defined to set a global constraint between all back­
ground brightnesses on the page. It can be used to avoid dazzle due
to the presence of light elements near dark elements.

In our context, users define their own preferences. This is not
based on guidelines, like WCAG 2.0.

In this setup, we use four main different preference sets plus their
aggregated version.

S1 = P2 (9)
S2 = P2 ∪ P3 (10)
S3 = P1 ∪ P2 (11)
S4 = P1 ∪ P2 ∪ P3 (12)

The first preference set S1 contains only one general preference.
It is defined by a user with difficulties in perceiving colors or light­
ness, and who wants to increase contrast. The S2 preference set
includes P2 and P3 preferences. This configuration is used when
a user wants to increase brightness contrast to improve readabil­
ity, while avoiding changing a lot of colors regarding the original
page color context. The third preference set S3 also includes P2

preferences but here, together with P1 preferences. The result of
adaptation does not take care about the original color context but
applies new background colors to get similar brightness on the en-
tire page. The last preference set P4 is the combination of all P1, P2

and P3 preferences. We want at the same time a minimal contrast
between text and its direct background, changing all backgrounds
to get similar brightness, while choosing colors close to the original
ones.

Genetic algorithms use objective functions to assess preferences.
To implement the minimal contrast function, we compare the re­
sult of the brightness contrast function with a predefined threshold.
The comparison result is a quality indicator (satisfaction). All ob­
jective functions representing preferences used in this experiment
are based on this pattern (comparing a value with a threshold). In
our experiment, we consider either one objective function for each
preference, or aggregated objective functions that encapsulate sev­
eral preferences (and reduce the number of objective functions).
The number of aggregated functions is a parameter of our experi­
ment.

Shared parameters are detailed in Tables 1 and 2. Due to specific
parameters of each algorithm, configurations take into account the

NSGA version. Population size is a parameter of NSGA-II, while
for NSGA-III, population is calibrated using the number of refer­
ence points. Tables 3 and 4 give a summary of the parameters used
for each version.

Table 1: Global configuration summary.

Parameter Value(s)

Crossover (resp. Mutation) prob. 0.94 (resp. 0.06)
Max exec time 10s

Max generations unlimited
Repeat 30 times

Table 2: Preferences configuration summary.

Parameter Value(s)

Preference sets 4
Maximal brightness difference 40%

Maximal color distance 40°
Minimal contrast 30%

Table 3: NSGA-II concerns configuration summary.

Parameter Value(s)

Population Size 250

The next section presents and discusses the results obtained when
applying the configurations on the chosen website panel.

6. EXPERIMENT RESULTS
The presented results extend previous results obtained for NSGA­

II [14]. We apply NSGA-II to more websites, with a version of the
algorithm which fixes some limitations of the color distance func­
tion. Besides, we compare NSGA-III results on the same websites,
in order to evaluate the assumption of superiority of NSGA-III.
These websites have been chosen by one of the co-authors who has
low vision. Other widely visited websites that we observed have no
serious problems and were not really interesting to be included in
our experiment.

6.1 Godaddy with NSGA-II
We first analyze into details the Godaddy website adaptation,

which is an intermediary problem in terms of number of HTML
elements used, structural parts and number of colors.

Table 5 gives execution times, number of generations and in­
formation about non terminated executions for all non-aggregated
preference sets with NSGA-II.

The preference sets S1 and S3 have at least one good solution
returned by NSGA-II.

Nearly all executions lead to a good solution with S1. Only 4%
of executions cannot find a good solution and reach 10s. Finding
new colors for having the required minimal contrast is not too dif­
ficult in this case. There are 22 color variables: 14 text colors and
8 background colors. Several text color variables can be linked by
a contrast constraint to a same background color variable, when
these texts share the same background. S1 contains 14 constraints.
Because we are not working with aggregated objective functions,
we also have 14 objective functions.

Table 4: NSGA-III concerns configuration summary.

Parameter Value(s)

Table 5: NSGA-II “Godaddy” with non aggregated preference sets

 Prefs. set
S1 S3 S2 S4

The second preference set S3 is a little more complex. In ad­
dition to the constraints of S1, we add a global constraint linking
all background color brightnesses. This constraint is satisfied when
all backgrounds have a similar brightness, or in other words, when
the difference between the lightest and the darkest background is
low. This new constraint complicates the problem. As a result,
only 6% of executions give a good solution before 10s. When ex­
ecutions reach 10s, the number of satisfied objective functions is a
good quality indicator. Here, on average, about 68% of objective
functions are satisfied (9.5 out of 14), for S1, and about 69% (10.4
out of 15) for S3.

The two last columns of Table 5 refer to S2 and S4 preference
sets. These two sets are much more complex and do not give good
solutions in the given time. S2 and S4 have both all contrast con­
straints, such as S1 and S3, but S2 integrates the constraint of prox­
imity with original colors, and finally S4 has all constraints. Results
are slightly different. There are 20% of satisfied objective functions
for S2 versus about 21.4% for S4. In best cases, solutions satisfy
about 30% of objective functions. Worst cases are about 12%. For
NSGA-II, all executions have been made with a fixed population of
250 individuals.

The aggregation of objective functions allows us to address the
known problem of NSGA-II, that drastically looses efficiency when
the objective function number grows. Table 6 gives results for ag­
gregated objective functions. Aggregation is realized by creating
two (aggregated) objective functions for each general preference
GP2 and GP3. The global preference GP1 regarding the unifor­
mity of background color brightness cannot be aggregated because
it only generates one preference linking all background color vari­
ables.

We observe that this aggregation has a positive impact on the
execution time and on finding a good solution. Whereas without
aggregation, for the first preference set S1, 4% of executions could
not terminated before 10s, now, with the aggregated preference set
S1aggr (first column of Table 6) all executions return a good solu­
tion in 0.4s on average. There is also a significant improvement for

Obj. Funcs.

Exec. time (s)
Average

Standard deviation
Min
Max

Generations
Average

Standard deviation
Min
Max

Non cpltd. exec.
Percentage

Satisfied prefs.
Standard deviation

Min
Max

Minimum population size 256
Divisions number from 2 to p

14 15 36 37

5.87 9.89 10.00 10.00
1.64 0.53 0.00 0.00
3.67 6.64 10.00 10.00
10.00 10.00 10.00 10.00

244 376 200 193
64.8 27.6 7.9 6.4
154 264 192 183
397 415 228 224

4 94 100 100
9.5 10.4 7.2 7.9
0.5 3.8 1.3 1.4
9 3 4 5
10 14 10 12

Table 6: NSGA-II “Godaddy” with aggregated preference sets Table 8: NSGA-III “Godaddy” with aggregated preference sets

Prefs. set

Obj. Funcs.

Exec. time (s)
Average

Standard deviation
Min
Max

Generations
Average

Standard deviation
Min
Max

Non cpltd. exec.
Percentage

Satisfied prefs.
Standard deviation

Min
Max

S1aggr S3aggr S2aggr S4aggr

2 3 4 5

0.41
0.05
0.32
0.49

0.46
0.10
0.32
0.84

10.00
0.00

10.00
10.00

10.00
0.00
10.00
10.00

21
2.5
17
26

22
5.1
16
41

414
2.4
409
418

386
1.9
383
390

0
–
–
–
–

0
–
–
–
–

100
0.6
0.8
0
2

100
1.3
0.4
1
2

S3aggr preference set, with all executions returning a good solu­
tion, while for S3, we had 94% of non-completed executions. The
average execution time is about 0.46s with aggregation, when it is
about 10s without. Executing NSGA-II on Godaddy website with
S2aggr and S4aggr does not produce any good solution before10
seconds (as in the non-aggregated case). For these two last cases,
there is no significant improvement, but we can notice that there
is no particular performance loss, results are similar. Aggregation
somewhat simplifies the problem by reducing the number of ob­
jective functions to be processed by the algorithm. In NSGA-II the
number of objective functions is a main complexity component. We
observe a significant improvement for the simplest configurations.

6.2 Godaddy with NSGA-III
The third version of NSGA is presented as a "many-objective"

evolutionary algorithm, able to deal with much more objective func­
tions while keeping good efficiency. We apply the same set of pref­
erences on the same problem (without any aggregation), now with
NSGA-III (Table 7). In this case, population is sized regarding the
number of objective functions and the number of divisions (Sect.
4).

Table 7: NSGA-III “Godaddy” with non aggregated preference
sets

Prefs. set

Pop. size 256 256 668 704
Obj. Funcs. 14 15 36 37

Exec. time (s)
Average 2.71 3.53 10.00 10.00

Standard deviation 0.48 0.70 0.00 0.00
Min 1.76 2.43 10.00 10.00
Max 3.63 5.78 10.00 10.00

Generations
Average

Standard deviation
Min
Max

Non cpltd. exec.
Percentage

Satisfied prefs.
Standard deviation

Min
Max

S1 S3 S2 S4

56 65 12 10
9.8 12.7 0.0 0.2
37 45 12 10
75 106 12 11

0 0 100 100
– – 15.5 15.3
– – 1.2 1.2
– – 13 13
– – 18 18

Prefs. set
S1aggr S3aggr S2aggr S4aggr

Pop. size 256 256 256 256
Obj. Funcs. 2 3 4 5

Exec. time (s)
Average 0.38 0.40 9.11 10.00

Standard deviation 0.04 0.04 2.68 0.00
Min 0.27 0.31 0.94 10.00
Max 0.46 0.48 10.00 10.00

Generations
Average

Standard deviation
Min
Max

Non cpltd. exec.
Percentage

Satisfied prefs.
Standard deviation

Min
Max

21 21 382 392
2.3 1.9 111.6 3.4
16 17 43 385
26 25 432 400

0 0 90 100
– – 2.5 3.0
– – 0.6 0.7
– – 1 2
– – 3 4

The NSGA-III algorithm brings an overall improvement. In the
two first cases (S1 and S3), the execution time is really reduced.
S1 execution time is reduced by twofold and S3 execution time
by threefold. Moreover, in both cases all executions give a good
solution. For the last two cases, even if executions do not return
good solutions, the quality of solutions returned when the algorithm
reaches 10s is really improved. With NSGA-III, we have about
43% of satisfied objective functions in S2 and S4 versus about 21%
with NSGA-II. The maximal and the minimal number of satisfied
objective functions are also increased.

Table 8 gives results of the application of NSGA-III on the four
preference sets with objective function aggregation. We saw in Ta­
ble 6 that aggregation of objective functions had a positive impact
on the computation time and on the quality of solutions returned
in case of non-completed executions. With NSGA-III, aggregation
also has a positive impact. While execution times are reduced, the
quality of solutions returned when the algorithm reaches 10s (S2 or
S4) is improved. This quality is about 60%. Thus we observe that,
even if NSGA-III was designed to deal with many objectives, the
aggregation may be useful in our context.

We also notice that NSGA-III takes more time to complete a
generation. But results show that it often needs less generations
to converge to a good solution than NSGA-II. These results give
us an intuition about trends regarding the two algorithm versions.
Next section compares the two algorithms on several very different
websites.

6.3 A wider comparison
Tables 9 and 10 show more results on execution of NSGA-II and

NSGA-III for all preference sets. These tables allow us to compare
results on 9 real web pages. The first table gives figures for execu­
tions without aggregation, while the second one gives figures with
objective function aggregation.

When each preference is implemented as one objective function
(no aggregation), the first preference set S1 gives good results on
a large part of the studied websites (Table 9). The two last web-
sites have many HTML elements. The computation of a minimal
brightness contrast for the text regarding its background is not too
difficult for several web pages. NSGA-III gives better results for
this preference set. In particular, we have a real improvement on
the two last cases: The UBOFormation example returns at least
one good solution for all executions and we can get some good

Table 9: (Time / non-completed executions / satisfaction for non-completed executions) Global comparison on several real websites

Pref. set S1 S3 S2 S4

Algorithm NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III
units s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % Websites

Godaddy
Parempuyre

Legibase
NFB

BLFamilyPortal
BLMyAccount

GDArchitect
UBOLEA

UBOFormation

5.87 / 4 / 67.9
0.69 / 0 / –
0.34 / 0 / –
0.39 / 0 / –
3.77 / 0 / –
2.24 / 0 / –
0.70 / 0 / –

10 / 100 / 32.4
8.97 / 54 / 61.8

2.71 / 0 / –
0.29 / 0 / –
0.12 / 0 / –
0.15 / 0 / –
2.53 / 0 / –
0.94 / 0 / –
0.25 / 0 / –

9.95 / 87 / 86.7
5.88 / 0 / –

9.89 / 94 / 69.3

0.78 / 0 / –

0.71 / 4 / 83.3

0.46 / 0 / –

9.92 / 97 / 92.3

9.40 / 90 / 90

0.72 / 0 / –

10 / 100 / 16.4

10 / 100 / 34.4

3.53 / 0 / –

0.41 / 0 / –

0.18 / 0 / –

0.21 / 0 / –

5.67 / 17 / 92.3

1.74 / 0 / –

0.30 / 0 / –

10 / 100 / 75.5

7.33 / 17 / 94.4

10 / 100 / 20
10 / 100 / 31.4
10 / 100 / 48.5
10 / 100 / 58.6
10 / 100 / 21.7
10 / 100 / 22.3
10 / 100 / 35

10 / 100 / 17.7
10 / 100 / 19.3

10 / 100 / 43.1
9.95 / 97 / 82.9
5.80 / 20 / 90.8
3.81 / 4 / 92.9
10 / 100 / 43.1
10 / 100 / 61.9
9.20 / 80 / 88.3
10 / 100 / 34.8
10 / 100 / 37.8

10 / 100 / 21.4 10 / 100 / 41.4
10 / 100 / 33.2 10 / 100 / 79.5
10 / 100 / 40.7 7.16 / 44 / 87.1
10 / 100 / 56 6.49 / 34 / 92.7

10 / 100 / 21.6 10 / 100 / 41.9
10 / 100 / 23.3 10 / 100 / 58.5
10 / 100 / 34.7 9.47 / 87 / 85.8
10 / 100 / 18.2 10 / 100 / 34.1
10 / 100 / 19.5 10 / 100 / 37.9

Table 10: (Time / non-completed executions / satisfaction for non-completed executions) Global comparison on several real websites with
objective functions aggregation

Pref. set S1aggr S3aggr S2aggr S4aggr

Algorithm NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III

Websites
units s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % s / % / %

Godaddy 0.41 / 0 / – 0.38 / 0 / – 0.46 / 0 / – 0.40 / 0 / – 10 / 100 / 15 9.11 / 90 / 62.5 10 / 100 / 26 10 / 100 / 60
Parempuyre 0.24 / 0 / – 0.18 / 0 / – 0.24 / 0 / – 0.19 / 0 / – 7.52 / 74 / 47.5 1.97 / 14 / 75 8.16 / 80 / 60 4.34 / 37 / 80

Legibase 0.27 / 0 / – 0.10 / 0 / – 0.21 / 0 / – 0.13 / 0 / – 7.17 / 70 / 52.5 0.96 / 4 / 75 8.13 / 80 / 54 1.89 / 4 / 80
NFB 0.22 / 0 / – 0.13 / 0 / – 0.24 / 0 / – 0.17 / 0 / – 4.25 / 37 / 55 0.58 / 0 / – 7.23 / 70 / 54 2.41 / 10 / 80

BLFamilyPortal 0.48 / 0 / – 0.44 / 0 / – 0.83 / 4 / 66.7 0.52 / 0 / – 10 / 100 / 30 8.19 / 80 / 65 10 / 100 / 22 10 / 100 / 60
BLMyAccount 0.52 / 0 / – 0.32 / 0 / – 0.90 / 4 / 66.7 0.38 / 0 / – 8.50 / 84 / 47.5 4.83 / 44 / 72.5 10 / 100 / 34 9.72 / 97 / 72

GDArchitect 0.22 / 0 / – 0.15 / 0 / – 0.31 / 0 / – 0.17 / 0 / – 6.87 / 67 / 47.5 1.36 / 7 / 75 6.59 / 64 / 64 3.00 / 20 / 80
UBOLEA 2.78 / 24 / 45 1.82 / 14 / 50 10 / 100 / 20 10 / 100 / 60 10 / 100 / 20 9.70 / 97 / 55 10 / 100 / 26 10 / 100 / 46

UBOFormation 0.47 / 0 / – 0.45 / 0 / – 1.46 / 10 / 66.7 0.45 / 0 / – 10 / 100 / 22.5 9.40 / 94 / 60 10 / 100 / 40 9.41 / 94 / 68

solutions for the UBOLEA example. Results with the second pref­
erence set S3 confirm these trends. The preference sets S2 and S4

give another important information. In addition to finding some
good solutions when it is not the case with NSGA-II, NSGA-III
highly increases the level of satisfaction of returned approximate
solutions. Indeed, when an execution does not return a good solu­
tion, either because it does not find one existing good solution, or
because such solution does not exist (conflict between preferences),
the solution quality has a huge importance. When we have 34.7%
of satisfaction (for non-completed executions) on GDArchitect ex-
ample with NSGA-II and the S4 preference set, we reach 85.8%
with NSGA-III. With the same configuration on Parempuyre ex-
ample, we have now about 80% with NSGA-III, when it is about
33% with NSGA-II.

We have seen that the objective function aggregation also has a
positive impact with NSGA-III on the Godaddy example. Table
10 shows this behavior for other websites. The UBOLEA example
website, with S3 preference set, shows a significant improvement
in the returned solution quality, even if both NSGA-II and NSGA­
III do not return any good solution. The S4 preference set case,
actually shows a significant improvement in the number of execu­
tions leading to a good solution, in execution time and in the quality
of solutions.

To summarize, NSGA-III is a real enhancement of its prior ver­
sion NSGA-II. NSGA-III allows us to obtain good solutions for
more difficult problems. Moreover, the quality of the returned so­
lution, when the solution does not satisfy all preferences, is really
better.

6.4 Threats to validity

6.4.1 Construct validity
Experiment has been made with several distinct configurations

for the algorithms. Two algorithms have been used with common
and specific parameters. The preference sets and the configura­

tions have been chosen for analyzing benefit of the new version
of NSGA and the effect of aggregation on it. Aggregation that was
positive for NSGA-II as it is shown in our previous paper [14] keeps
similar impact for NSGA-III. The experiment allows us to gather
many information including execution time, number of generations
and number of satisfied objective functions. From these figures,
we compute many other indicators, to get for example the number
of executions reaching 10 seconds. Experiment results allow us to
know if the approach can be used in a real case study. When an exe­
cution returns at least one good solution in less than 10 seconds, we
focus on the elapsed time and on the number of generations regard­
ing this time. When an execution does not return any good solution
in less than 10 seconds, we give information about the number of
satisfied objective functions that give a good estimate of the quality
of the returned solution. Here the population size for NSGA-II has
the same value as in our previous paper. However, this value could
be changed to measure its effects. In the two algorithms, we use a
same and fixed crossover and mutation probability. They could be
changed to evaluate the impact of this probability.

6.4.2 Internal validity
Information on the studied websites has been collected by three

persons. Colors of HTML elements have been obtained using a
software picking screen pixel color: “gcolor2” on Linux system
and the digital colorimeter included in the MAC OS platform. We
simplify web pages by defining a new model of variables and con­
straints used by resolution algorithms.

6.4.3 External validity
The experiment is based on a selection of 9 very different web-

sites. These websites have been chosen from noticed accessibility
problems for people with low vision and also regarding their di­
versity in terms of number of HTML elements or number of colors
used. We focus our study on brightness, contrast and colors because
they represent widely encountered difficulties for people with low

vision. Moreover they are issues on which assistive technologies
do not bring relevant adaptation. The diversity of input data (web­
site, preferences, resolution algorithms used and their parameters)
is significant.

6.4.4 Conclusion validity
For each configuration (website, algorithm, preference set, etc.),

we made 30 executions. We also tested our algorithms with 60
executions, and we obtained similar results. In our results, we con­
sidered many measures including average, min, max and standard
deviation for execution time, number of generations and number of
satisfied objective functions. Previous papers [14, 15] give other
comparisons, for example with an exact algorithm from Preference
Theory.

7. CONCLUSION
Assistive technologies may provide a relevant help for people

with low vision. However, their general purpose can lead to irrele­
vant adaptation for people with specific needs. The main drawback
of these solutions is the important alteration of the page appear­
ance, which corresponds to the designer preferences. Indeed, col-
ors may be completely changed, page layout can be modified and
it is quite impossible to target a structural part of a page like the
menu. Our approach works at HTML element level, and with prop­
erties that describe the elements. Moreover, it computes an adap­
tation for specific user preferences, while taking into account the
designer preferences. These preferences may be inconsistent. We
compare the efficiency of two evolutionary algorithms to find a rel­
evant adaptation in the huge search space of possible adaptations.
The comparison is done on real websites that are very different.
We obtain results that show general trends. We also study the be­
havior of aggregating objective functions. The aggregation allows
us to reduce running time, and to strongly increase the number of
executions that return good solutions. NSGA-III, used with objec­
tive function aggregation, gives the best results. As future work,
we plan to investigate and compare results obtained with a CSP
(Constraint Satisfaction Problem) approach and with a deep learn­
ing approach. Currently, gathering information from web pages is
manually done. The structural object recognition in HTML pages
is tricky and we are working on an approach to automatize this ac­
quisition. We are also planning experiments conducted with a panel
of people with low vision to reinforce our findings.

Acknowledgment
The authors would like to thank Berger-Levrault, which supported
this work with a grant, and Rémi Coletta for his valuable remarks
about the way of reporting the experiment.

8. REFERENCES
[1] Accessibility in Android.

https://developer.android.com/design/
patterns/accessibility.html. Accessed:
2015-01-10.

[2] Accessibility in Windows 8. http://www.microsoft.
com/enable/products/windows8/. Accessed:
2015-01-10.

[3] Apple Accessibility OS X.
https://www.apple.com/accessibility/osx/.
Accessed: 2015-01-10.

[4] Chrome accessibility support. http://www.chromium.
org/user-experience/low-vision-support.
Accessed: 2015-01-10.

[5] Cloud4all. http://www.cloud4all.info/.

Accessed: 2015-03-25.

[6] Freedom Scientific tools.
http://www.freedomscientific.com/. Accessed:
2015-01-10.

[7] Gnome screen magnifier gnome-mag.
https://wiki.ubuntu.com/Accessibility/
Reviews/gnome-mag. Accessed: 2015-01-10.

[8] KDE screen magnifier Kmag.

http://kmag.sourceforge.net/. Accessed:

2015-01-10.

[9] Mozilla accessibility support. http://www.chromium.
org/user-experience/low-vision-support.
Accessed: 2015-01-10.

[10] VoiceOver. http://www.apple.com/
accessibility/osx/voiceover/. Accessed:
2015-01-10.

[11] Window-Eyes. http://www.gwmicro.com/. Accessed:
2015-01-10.

[12] J. P. Bigham, R. S. Kaminsky, R. E. Ladner, O. M.
Danielsson, and G. L. Hempton. Webinsight:: Making web
images accessible. In Proceedings of the 8th International
ACM SIGACCESS Conference on Computers and
Accessibility, Assets ’06, pages 181–188, New York, NY,
USA, 2006. ACM.

[13] J. P. Bigham and R. E. Ladner. Accessmonkey: a
collaborative scripting framework for web users and
developers. In Proceedings of the 2007 international
cross-disciplinary conference on Web accessibility (W4A),
pages 25–34. ACM, 2007.

[14] Y. Bonavero, M. Huchard, and M. Meynard. Improving Web
Accessibility: Computing New Web Page Design with
NSGA-II for People with Low Vision. International Journal
on Advances in Internet Technology, issn 1942-2652,
7(3-4):243–261, 2014.

[15] Y. Bonavero, M. Huchard, and M. Meynard. Web page
personalization to improve e-accessibility for visually
impaired people. In Proceedings of the Second International
Conference on Building and Exploring Web Based
Environments (WEB 2014), pages 40–45, 2014.

[16] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Extracting content
structure for web pages based on visual representation. In
Web Technologies and Applications, pages 406–417.
Springer, 2003.

[17] J. Chen, B. Zhou, J. Shi, H. Zhang, and Q. Fengwu.
Function-based object model towards website adaptation. In
Proceedings of the 10th international conference on World
Wide Web, pages 587–596. ACM, 2001.

[18] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE
Trans. Evolutionary Computation, 6(2):182–197, 2002.

[19] K. Deb and H. Jain. An evolutionary many-objective
optimization algorithm using reference-point-based
nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evolutionary
Computation, 18(4):577–601, 2014.

[20] S. Ferretti, S. Mirri, C. Prandi, and P. Salomoni. Exploiting
reinforcement learning to profile users and personalize web
pages. In IEEE 38th Annual Computer Software and
Applications Conference, COMPSAC Workshops 2014,
Vasteras, Sweden, July 21-25, 2014, pages 252–257. IEEE,
2014.

 https://developer.android.com/design/patterns/accessibility.html
 https://developer.android.com/design/patterns/accessibility.html
 http://www.microsoft.com/enable/products/windows8/
 http://www.microsoft.com/enable/products/windows8/
https://www.apple.com/accessibility/osx/
http://www.chromium.org/user-experience/low-vision-support
http://www.chromium.org/user-experience/low-vision-support
http://www.cloud4all.info/
http://www.freedomscientific.com/
https://wiki.ubuntu.com/Accessibility/Reviews/gnome-mag
https://wiki.ubuntu.com/Accessibility/Reviews/gnome-mag
http://kmag.sourceforge.net/
http://www.chromium.org/user-experience/low-vision-support
http://www.chromium.org/user-experience/low-vision-support
http://www.apple.com/accessibility/osx/voiceover/
http://www.apple.com/accessibility/osx/voiceover/
http://www.gwmicro.com/

[21] S. Ferretti, S. Mirri, C. Prandi, and P. Salomoni. User
centered and context dependent personalization through
experiential transcoding. In Proc. IEEE Consumer
Communications and Networking (CCNC 2014), Workshop
on Networking Issues in Multimedia Entertainment
(NIME’14), 2014.

[22] A. Foti and G. Santucci. Increasing web accessibility through
an assisted color specification interface for colorblind
people. pages 41–48, 2009.

[23] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based
software engineering: trends, techniques and applications.
ACM Comput. Surv., 45(1):11:1–11:61, Dec. 2012.

[24] J. Horn, N. Nafpliotis, and D. Goldberg. A niched Pareto
genetic algorithm for multiobjective optimization. In
Proceedings of the First IEEE Conference on Evolutionary
Computation, pages 82–87. IEEE, 1994.

[25] M. A. Islam, Y. Borodin, and I. V. Ramakrishnan. Mixture
model based label association techniques for web
accessibility. In K. Perlin, M. Czerwinski, and R. Miller,
editors, UIST, pages 67–76. ACM, 2010.

[26] H. Jain and K. Deb. An evolutionary many-objective
optimization algorithm using reference-point based
nondominated sorting approach, part II: handling constraints
and extending to an adaptive approach. IEEE Trans.
Evolutionary Computation, 18(4):602–622, 2014.

[27] S. Kaci. Working with Preferences: Less Is More. Cognitive
Technologies. Springer, 2011. ISBN:978-3-642-17279-3.

[28] J. Knowles and D. Corne. The Pareto archived evolution
strategy: A new baseline algorithm for Pareto multiobjective
optimisation. In Proceedings of the Congress on
Evolutionary Computation, volume 1, pages 98–105. IEEE,
1999.

[29] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining
convergence and diversity in evolutionary multiobjective
optimization. Evolutionary computation, 10(3):263–282,
2002.

[30] D. Lunn, S. Bechhofer, and S. Harper. A user evaluation of
the sadie transcoder. In S. Harper and A. Barreto, editors,
Proceedings of the 10th International ACM SIGACCESS
Conference on Computers and Accessibility, ASSETS 2008,
Halifax, Nova Scotia, Canada, October 13-15, 2008, pages
137–144. ACM, 2008.

[31] D. Lunn, S. Harper, and S. Bechhofer. Combining sadie and
axsjax to improve the accessibility of web content. In
D. Sloan, C. Asakawa, and H. Takagi, editors, Proceedings
of the International Cross-Disciplinary Conference on Web
Accessibility, W4A 2009, Madrid, Spain, April 20-21, 2009,
ACM International Conference Proceeding Series, pages
75–78. ACM, 2009.

[32] M. Macías, J. González, and F. Sánchez. On adaptability of
Web sites for visually handicapped people. In P. D. Bra,
P. Brusilovsky, and R. Conejo, editors, Proceedings of the
second International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems (AH), volume 2347 of
Lecture Notes in Computer Science, pages 264–273.
Springer, 2002.

[33] S. Mirri, C. Prandi, and P. Salomoni. Experiential adaptation
to provide user-centered web content personalization. In
Proc. IARIA Conference on Advances in Human oriented
and Personalized Mechanisms, Technologies, and Services
(CENTRIC2013), pages 31–36, 2013.

[34] S. Mirri, P. Salomoni, C. Prandi, and L. A. Muratori.

Gapforape: an augmented browsing system to improve web
2.0 accessibility. New Review of Hypermedia and

Multimedia, 18(3):205–229, 2012.

[35] J. T. Richards and V. L. Hanson. Web accessibility: a broader
view. In WWW ’04: Proceedings of the 13th international
conference on World Wide Web, pages 72–79. ACM Press,
2004.

[36] G. Santucci. Vis-a-wis: Improving visual accessibility
through automatic web content adaptation. In C. Stephanidis,
editor, Universal Access in Human-Computer Interaction.
Applications and Services, 5th International Conference,
UAHCI 2009, Held as Part of HCI International 2009, San
Diego, CA, USA, July 19-24, 2009. Proceedings, Part III,
volume 5616 of Lecture Notes in Computer Science, pages
787–796. Springer, 2009.

[37] B. Tibbitts, S. Crayne, V. Hanson, J. Brezin, C. Swart, and
J. Richards. HTML parsing in Java for accessibility
transformation. In Proceedings of XML 2002 – XML
Conference and Exposition, 2002.

[38] L. Troiano, C. Birtolo, and M. Miranda. Adapting palettes to
color vision deficiencies by genetic algorithm. In
Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’08, pages 1065–1072,
New York, NY, USA, 2008. ACM.

[39] Visual impairment and blindness, fact sheet n°282. World
Health Org., http://www.who.int/mediacentre/
factsheets/fs282/en, Oct. 2013. Accessed:
2014-11-09.

[40] World Wide Web Consortium,
http://www.w3.org/TR/ATAG20/. Authoring tools
Accessibility Guidelines. Accessed: 2014-11-09.

[41] World Wide Web Consortium,
http://www.w3.org/TR/UAAG20/. User Agent
Accessibility Guidelines. Accessed: 2014-11-09.

[42] World Wide Web Consortium,
http://www.w3.org/WAI/intro/aria. Web
Accessibility Initiative - Accessible Rich Internet
Applications. Accessed: 2014-11-09.

[43] World Wide Web Consortium,
http://www.w3.org/TR/WCAG20/. Web Content
Accessibility Guidelines. Accessed: 2014-11-09.

[44] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength Pareto
approach. IEEE Trans. Evolutionary Computation,
3(4):257–271, 1999.

http://www.who.int/mediacentre/factsheets/fs282/en
http://www.who.int/mediacentre/factsheets/fs282/en
http://www.w3.org/TR/ATAG20/
http://www.w3.org/TR/UAAG20/
http://www.w3.org/WAI/intro/aria
http://www.w3.org/TR/WCAG20/

	Introduction
	Existing approaches
	Adapting web page with combined user and designer preferences
	Problem and resolution
	Problem definition
	Preference representation
	Resolution algorithm

	Comparison setup
	Experiment results
	Godaddy with NSGA-II
	Godaddy with NSGA-III
	A wider comparison
	Threats to validity
	Construct validity
	Internal validity
	External validity
	Conclusion validity

	Conclusion
	References

