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ABSTRACT 
The web has become a major tool for communication, services and 
an outstanding source of knowledge. It has also grown in com­
plexity, and end-users may experience difficulties in reading and 
acquiring good understanding of some overly complex or poorly 
designed web pages. This observation is even more valid for people 
with visual disabilities. In this paper, we focus on people with low 
or weakening vision, for whom we propose to adapt web pages to 
their needs, while preserving the spirit of the original design. In this 
context, obtaining a web page adaptation in a very short time may 
be a difficult problem, because user and designer needs and prefer­
ences may contradict each other, and because there may be a large 
number of adaptation possibilities. Finding a relevant adaptation in 
a large search space can hardly be done by an algorithm which com­
putes and assesses all possible solutions, which brings us to con­
sider evolutionary algorithms. A characteristic of our problem is to 
consider a set of preferences, each being implemented by an evalu­
ation function. This optimization problem can be dealt with multi­
objective genetic algorithms, including the Non-dominated Sorting 
Genetic Algorithm II (NSGA-II) and its next version (NSGA-III). 
NSGA-III has been recently introduced to address many-objective 
optimization problems (having more that four objectives). We com­
pare NSGA-II and NSGA-III performances in the context of adapt­
ing web pages in accordance to a set of preferences. The compar­
ison is based on running time, number of generations and quality 
of computed adaptation (number of satisfied objectives). We also 
show the importance of several parameters including population 
size, crossover/mutation probability, and the opportunity to aggre­
gate objective functions. From the obtained results, we conclude 
that the approach is feasible and effective on realistic web pages, 
especially with NSGA-III. 
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1. INTRODUCTION 
The world wide web is meeting a great success in increasing 

communication, providing services and disseminating knowledge. 
These opportunities are supported by the constant evolution of soft­
ware and hardware technologies. 

In the web world, the highly and constantly increasing band­
width and the wide use of high-resolution screens, encourage devel­
opers and designers to enrich their websites regardless the web page 
complexity. In addition, designers propose more and more complex 
and rich graphic charts. Today, aesthetics and appearance are of 
great importance, sometimes even compared to website function­
alities. Web browsing is becoming a visual experience for a large 
part of end-users. Pages are colorful, contain many images and use 
complex element positioning systems and organization layout. 

However, this evolution may have a negative impact, especially 
for people with disabilities. Visually impaired people are very af­
fected by such rich page design. Colorful websites, or web pages 
using color to convey information, may generate some difficulties 
for color-blind people. Not providing alternative text into an image 
containing textual data is a major barrier for blind people in ac­
cessing potentially important information. Artistic font family, and 
non-regular text style, may lead to reading difficulties for people 
with dyslexia. With very high-resolution screens, graphical inter­
faces may have tiny fonts which may be a problem, not only for old 
and disabled people. 

Many countries are adopting treaties or laws in order to enhance 
digital accessibility. In some countries, e-accessibility is consid­
ered as a citizens’ right and is a very important issue. Worldwide, 
about 246 million people are visually impaired and 39 million peo­
ple are blind [39]. Mainly due to the increasing life expectancy, 
these figures are constantly growing. 

Current assistive technologies, like JAWS or MAGic [6], Window-
Eyes [11], VoiceOver [10], that are widely used, may address some 
accessibility issues. Some are included in (or a companion of) op­
erating systems, such as Mac OS X [3], Windows 8 [2], Android 
[1] or Linux [7, 8]. In the low vision context, screen magnifiers 
are helpful to improve text readability and visualization of parts of 
a web page. There exist several commercial and non commercial 
software, such as “Enhanced desktop zoom” (Compiz accessibil­
ity plugin) or Orca for Linux, screen magnifier solution of Mac 
OS, and Magic or Zoomtext for Windows. They allow end-users 
to apply color filters on the screen, to modify the arrow and cursor, 
or to zoom in the screen to obtain a better view on specific parts. 
Nevertheless, due to high maintenance cost and very specific needs 
of end-users, assistive technologies only provide a set of generic 
tools that hardly meet the need of specific adaptation. Web browser 
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options have also been proposed [4, 9]. The page style can be com­
pletely redefined, which may cause the complete loss of the initial 
design, and these tools also propose a set of generic and global 
modifications. 

Independently of tools, accessibility standards have been pro­
posed. The W3C (World Wide Web Consortium) and other orga­
nizations publish sets of technical specifications in order to guide 
accessible website development. The compliance to these specifi­
cations provides a minimum level of accessibility, for people who 
do not use the often expensive assistive technologies. Besides, they 
guarantee a satisfactory access to third-party software. Specifica­
tions are divided into three main guidelines including WCAG 2.0 
(Web Content Accessibility Guideline [43]), UAAG (User Agent 
Accessibility Guideline [41]) or ATAG (Authoring tool Accessi­
bility Guideline [40]). WAI - ARIA (Web Accessibility Initiative ­
Accessible Rich Internet Application [42]) is specialized in rich and 
dynamic interfaces (for example Javascript web user interfaces). 
Nevertheless, despite the efforts of some developers to comply with 
the standards, many websites have a low level of accessibility be­
cause the standards are too broad [36]. 

Other approaches propose more personalized web page adapta­
tion. Some are dedicated to specific deficiencies, like color-blind­
ness in [36]. They often only consider low-level elements in the 
web page like [37, 13] and simple description of end-user needs or 
no description at all. 

In this paper, we aim to consider end-user preferences, but also 
designer preferences, that may be more or less complex and be ex­
pressed on properties of elements of the page. For example we may 
want all backgrounds in the page with a similar brightness, a min­
imal contrast between a specific text and its background, and keep 
colors as close as possible to the original colors. Such preferences 
may contradict each other, leading to a large number of adapta­
tion possibilities. To explore this possibly large space of solutions 
in a very short time, we consider evolutionary algorithms. Be­
sides, as we consider a set of preferences, we choose to use multi­
objective evolutionary algorithms, which produce optimal solutions 
that make trade-offs between the preferences. In a previous work 
[14], we proposed an approach based on the Non-dominated Sort­
ing Genetic Algorithm II (NSGA-II), that we tested on a set of web-
sites to check its feasibility. The study showed the benefits but also 
the limits of the approach regarding running time and the number 
of satisfied preferences. A variant of NSGA-II, namely NSGA-III, 
has been recently introduced to specifically address many-objective 
optimization problems (having more than four objectives). As we 
may have many preferences, we carry out a new study to investigate 
the potential benefits brought by NSGA-III. We compare NSGA-II 
and NSGA-III running time, number of generations and of satisfied 
objectives. We study the effect of parameters including population 
size, crossover and mutation probability, and the impact of aggre­
gating objective functions. 

Section 2 describes research work that aims to improve web ac­
cessibility for low vision users. In Section 3, we illustrate and out­
line our approach on an actual web page. Then, we present in Sec­
tion 4 the principles of preference representation and of the multi­
objective evolutionary algorithms. Section 5 presents how we are 
encoding our problem and how we are tuning the algorithms to ob­
tain satisfactory results. Section 6 reports and discusses the results, 
and we conclude in Section 7 with perspectives of our work. 

2. EXISTING APPROACHES 
Nowadays web page adaptation is addressed by commercial as­

sistive tools, dedicated configurations in operating systems, web 
browser extensions, and by research work that aims to take better 

account of user needs and preferences. Some approaches deal with 
specific deficiencies like color vision deficiency [36] [38], while in 
our case, we aim to propose a general solution for low vision users. 

As mentioned in [34], architectures of the proposed prototypes 
divide into client-side [34, 36, 13], proxy-based [37], host-content­
server-side, web page [12] or web-service. The tool can be intended 
for end-user only [36, 34, 32, 37], for the designer [32], for an 
assistive tool [30, 31, 25] or for multiple recipients [13, 12]. Our 
prototype tool is designed to be used on the client-side and targets 
the end-users. 

The proposed approaches deal with different kinds of elements. 
Some only consider basic elements such as specific text, color or 
background [36, 37], while others focus on structure and roles of 
the elements, such as lists, menus, sections, fields or titles [30, 
31, 25]. For example, in [25], labels are assigned to form fields 
by probabilistic optimization approach, in order to ease the read­
ing and filling of the fields. Besides, more advanced approaches 
propose their own meta-model or language [32, 30] to be able to 
manipulate high-level abstractions. In our case, we let the users ex­
press their preferences at several levels of abstraction, using vari­
ables that describe pairs composed of one relevant element of any 
kind, and one possibly complex property. A preference is any 
evaluable function expressed on variables and their domains. Be­
sides we take into account designer preferences by the mean of 
evaluable functions. Approaches that deal with higher level ele­
ments often need procedures to recognize them. This is done for 
example with pattern recognition and source code analysis in [32]. 

During the transcoding, the modified elements often are HTML 
[30, 37] and CSS rules [13, 34], but may also be scripts, under 
some conditions [34, 36]. In [31], the web content is enriched with 
CNR (Content Navigation Rules) by introducing ARIA statements. 
This allows the user to navigate using the screen reader and key 
presses. In [12], alternative text is automatically produced either 
by Optical Character Recognition from a picture or by decoding an 
image URL. The modifications may consider the whole web page 
[36], or only specific parts [20, 21, 33]. In our proposal, we modify 
the whole web page. 

The user profile can be a set of expected values for some char­
acteristics, like font or color [37, 36, 33]. The user profile may 
be predefined for user categories known in advance, as hyposight 
and different color blindness kinds in [36]. This user profile can 
be entered by the user via an interface, giving values for the char­
acteristics [37, 34] or from visual tests [22]. In a more innovative 
approach [20, 21, 33], the user profile is learned from user actions 
and Q-learning. In this paper, we do not address the user profile 
acquisition, which we will consider in a future work. 

Depending the form of the user profile, the adaptation step can 
take different forms. In [36], authors apply the predefined profile; 
in [33], the learned profile is applied. In Cloud4all project [5], par­
ticipants work on a Global Public Inclusive Infrastructure (GPII), 
which will allow a user profile to be easily implemented to person­
alize any device and content. In our case, as our preference set may 
contain conflicting preferences, a trade-off has to be found between 
the preferences. This is done by using a meta-heuristic algorithm 
in order to get a good approximate solution. 

Some approaches propose at the same time adaptations and met­
rics to judge the result [36] or to guide the process [25]. In the 
evolutionary algorithms, we use objective functions, that can be 
considered as metrics, to guide the search. 

Concerning the respect of the designer preferences, we incorpo­
rate them in our constraint set, potentially increasing conflicts be­
tween preferences (let us note that such conflicts can happen even 
between the user preferences). In [20, 21, 33], authors make lo­



cal changes to the web page, which has the effect of keeping the 
designer preferences on the unaltered parts. To our knowledge, the 
other approaches do not consider this aspect, and transcode the web 
page only on the basis of the user preferences. 

3.	 ADAPTING WEB PAGE WITH COMBINED 
USER AND DESIGNER PREFERENCES 

In this section, we outline our approach on a realistic example 
inspired by the website of an e-commerce platform, this website is 
represented in Figure 1. This website is very colorful, and for some 
users, contrasts are not high enough, especially in main menu tabs. 

In this colorful context, our first user preference is defined by 
a minimal contrast between text and background, in order to in­
crease readability of pages. Moreover, we define a maximal dis­
tance between the original color context and the computed one in 
order to keep as much as possible the designer preference. We aim 
to compute web page adaptation that makes a trade-off between 
the user preference (minimal brightness contrast) and the designer 
preference (original colors). One of the best adaptations that our 
approach computes is shown in Figure 2. 

Figure 1: Part of original “Lorem Ipsum” home page with “All 
products” tab opened. 

Figure 2: Adapted “Lorem Ipsum” home page with “All products” 
tab opened - minimal contrast is ensured, and color context is pre­
served as much as possible. 

The approach is based on the complete or partial knowledge of 
the HTML source code of the page we want to adapt. It considers 
low-level structural elements like paragraphs, links or titles as well 
as higher level structural elements like header, footer, article, menu 

or navigation bar. These high-level structural elements are indi­
cated to a large extent by tags in HTML 5 and Accessibility Rich 
Internet Applications (ARIA [42]) standards. In addition, we as­
sociate relations between the structural element features. HTML 
5 and ARIA are not required, but in the case of older versions 
of HTML, it is needed to add some recognition process to extract 
high-level structural information. If we consider the preference “if 
text font size is 12pt, the title font size must be at least 16pt font 
size”, a relation is established between the font size feature of the 
two elements (text and title). If we consider a preference involving 
higher-level structural elements, such as “In articles, the summary 
should be highlighted to the content”, a relation is established be­
tween the writing style of the summary and the main content of the 
same article. 

When a page is loaded into the web browser, we get all HTML 
elements and their features concerned by the currently defined pref­
erences. The tasks of getting high-level HTML elements when the 
page is loaded and applying new property values currently are man­
ually done and doing it automatically is an on-going work. These 
tasks require indeed complex page decomposition with clever struc­
ture recognition algorithms that are able to capture the perception 
of the page by the end-user [17, 16]. In this paper, we focus on 
computing a relevant adaptation, given the HTML elements and 
their properties. Even on medium size pages (in terms of HTML 
elements), this is a difficult problem which can hardly be dealt with 
an exact solution, as we show in [15] with approaches from Pref­
erence Theory [27]. To face this complexity problem, we imple­
ment and tune multi-objective genetic algorithms. Making a trade­
off between all preferences, these algorithms search for good adap­
tations and give results in acceptable running time. Then, we apply 
the new (computed) property values to the appropriate HTML ele­
ments. The next section explains our problem into more details and 
describes the two algorithms used, that we will compare on real 
web pages. 

4.	 PROBLEM AND RESOLUTION 
We describe here the problem we want to solve, how preferences 

are represented and the resolution algorithms used. 

4.1 Problem definition 
The main purpose of the page processing is to modify a web page 

regarding designer and user preferences. These preferences may 
come from users with disabilities that express their needs through 
preferences or may come from non disabled persons who want to 
improve the page appearance (or just for fun). We get the set of 
HTML elements and their associated properties related to the de­
fined preferences. As a result, the size of the built set depends on 
the nature of the website (in terms of architecture and number of el­
ements) and also on the kind of defined preferences. From HTML 
elements and their properties, we create a set of variation points, 
that we call variables (Eq. (1)). Each variable associates a property 
with its HTML element and has a domain of values. For instance, 
a variation point or variable can be “color of menu background”, 
“font size of links”, or “level 3 title font family”. 

V ariationP oints = {V1, V2, .., Vm} (1) 

Our aim is to find a value for each variable to satisfy at the same 
time all preferences. Thus preferences are represented by relations 
linking variables. The problem definition and the chosen resolution 
algorithms are driven by the desire to keep this choice as indepen­
dent as possible from any specific web page or preference. 



4.2 Preference representation 
Preferences connect variables. A constraint is the instantiation 

of a preference kind on particular variables. For example the pref­
erence kind defining minimal contrast between text and its direct 
background is instantiated for each textual HTML element. 

Constraints = {C1, C2, .., Ck } (2) 

All choices made on one or more variables constitute preferences 
or wishes. This is different from most of the existing work dealing 
with user preferences. For example, in [35], literal values like 10 pt 
or 16pt for a font size, blue or yellow for a color are object proper­
ties. Instead, in our approach we use constraints between variables. 

We use basic preference (Eq. (3)) and conditional preference 
(Eq. (7)) representation from Preference Theory [27]. Furthermore 
we expand them to hold “more complex” preferences. 

Vi op xi >p Vj op yj (3) 

In Eq. (3), Vi and Vj are two variables (with possibly Vi = Vj ), 
>p the preference symbol (A >p B means A preferred to B), op 
is an operator like = and xi (resp. xj ) is a value in the domain of 
Vi (resp. Vj ). To represent the user’s wish “I prefer green color for 
links to blue one”, we define the variable cL to represent the color 
of links (L is the link set). The cL domain is denoted by D(cL) in 
Eq. (4). 

D(cL) = {black, red, blue, yellow, purple, green} (4) 

The user’s wish is expressed as in Eq. (5). 

cL = green >p cL = blue (5) 

Conditional preference form is shown in Eq. (6). 

Vk op xk : Vi op xi >p Vj op yj (6) 

For example, in Eq. (7), we model the following preference: “If the 
font color is yellow, I prefer bold font to regular font”. To represent 
the weight of the text concerned by this preference, we introduce 
a new variable wT . The operator ":" appears here to indicate the 
condition and the action to be done if the condition is satisfied. 
This representation was considered in our previous paper [15]. 

cT = yellow : wT = bold >p wT = normal (7) 

Furthermore, we consider any complex function on variables 
and their domain values. With these considerations, we can ex­
press preferences like “I would like to have a text font size greater 
than 12pt”, “I would like to have black text if its size is less than 
10pt” or “I would like to have a minimal brightness contrast of 30% 
between texts and their direct backgrounds”. The brightness con­
trast is a binary function that represents the distance between color 
brightness of two objects. To model this last preference, we cre­
ate the object T representing a textual element and the object B 
for its direct background. From these objects we define two vari­
ables cT and cB to represent the text element color and the back­
ground element color. Then, we define a brightness contrast func­
tion contrast(x, y). This binary function takes as parameter the 
two colors and returns the value of their brightness contrast. The 
result of this function is compared with a threshold specified by the 
user. To determine the satisfaction of a constraint, we evaluate Eq. 
(8) where l is the desired threshold. 

contrast(cT , cB ) ≥ l (8) 

4.3 Resolution algorithm 
As said previously, the number of HTML elements in a web page 

multiplied by the number of considered properties can be poten­
tially huge, and so is the number of solutions to an adaptation prob­
lem. Functions like contrast or lightness are not hard to compute 
for each solution, however the search space size makes impossible 
the use of exact algorithms. This motivated us to use an optimiza­
tion algorithm. For example, in our smallest studied website, with 9 
color variables, and with only 3 values for each red, green, and blue 
color components, we obtain about 7.6 × 1012 solutions that can­
not be computed on standard computer with exact algorithms. Let 
us remark that this drastic domain reduction reduces the number of 
good solutions and may even remove all good solutions. 

When there is no solution satisfying all constraints, we are in­
terested in finding approximate solutions. Regarding the nature 
of the problem and its multi-objective dimension (several prefer­
ences and then constraints), we considered multi-objective evolu­
tionary algorithms [24, 28, 44]. We firstly used the Non-dominated 
Sorting Genetic Algorithm II (NSGA-II), which gave us accept­
able results on some websites. Recently, a new version has been 
proposed (NSGA-III), which may be more adapted to our specific 
case, where we have many objective functions (connected to many 
preferences). NSGA-III is still in early stage, while NSGA-II is 
popular in search based software engineering [23]. 

NSGA-II [18] considers an initial (possibly randomly built) pop­
ulation P0 of N solutions (or individuals). Pt is step t population. 
An offspring population Qt of size N is created from Pt individ­
uals using selection, crossover and mutation operators. Pt and Qt 

are merged to constitute Rt population. The N best individuals 
of Rt in terms of non-dominance and diversity are kept to form 
Pt+1 as follows. Several fronts are calculated that group solutions. 
The first non-dominated front (F1) groups non-dominated individ­
uals (that correspond to the best known solutions) with regard to 
at least one objective. We state that a solution s1 dominates an­
other solution s2 if: (i) s1 is better than s2 in all objectives, and 
(ii) s1 is strictly better than s2 in at least one objective. The second 
non-dominated front (F2) gathers the non-dominated individuals 
of Rt \ F1. The third non-dominated front (F3) gathers the non­
dominated individuals of Rt \ (F1 ∪ F2), etc. The Pt+1 population 
is composed of the k first fronts whose union has less than N ele­
ments. Then to get N elements, the Pt+1 population is filled with 
individuals selected in k + 1 front, based on a crowding distance 
[29] and a binary tournament selection operator. The crowding dis­
tance is used to select solutions that have the lowest densities of 
surrounding solutions. For a given solution s, this is measured as 
the average distance of the nearest solutions (neighbors of s) along 
each of the objectives. The resulting crowded-comparison operator 
is used to select scattered solutions. These steps are repeated until 
some stopping criteria are satisfied. 

NSGA-III [19, 26] differs from NSGA-II in the selection proce­
dures and the point where they occur in the algorithm. 

In NSGA-II, cross-over and mutation operators are applied to a 
selected part of the current population. This selection is made by 
binary tournaments. Two individuals are repeatedly randomly se­
lected in the current population and the best in terms of crowding 
distance and rank is kept. In NSGA III, all individuals of the current 
population have equal chance to be crossed or mutated (no prior se­
lection). When the current population has N individuals, applica­
tion of cross-over and mutation operators produces N individuals 
(offspring population). The obtained 2N individuals (current popu­
lation and offspring population) are sorted in non-dominated fronts 
and the k first fronts whose union has less than N elements are 
included in the next population (as in NSGA II). If the new popula­



tion did not meet N individuals, the remaining individuals have to 
be picked in the k + 1 front (denoted by Fl for "Last Front"). The 
underlying idea is to favor diversity (choosing individuals that are 
isolated in the objective function value space). While in NSGA II it 
is based on the crowding distance between Fl individuals, NSGA­
III uses a different strategy for preserving diversity which is based 
on reference points on the whole population. 

The reference points are uniformly distributed on the M dimen­
sional space where M is the number of objectives functions that 
are normalized. The number of reference points depends on the 
number of divisions that are chosen for each axis. The number of 
divisions is a parameter of the algorithm. A systematic method can 
consider the M dimensional space where each axis represents the 
values of one normalized objective function. Normalization con­
sists here to bring the values between 0 and 1. We build the hyper­
plane by connecting the 1 value of each objective function (axis). 
The reference points are uniformly placed on this hyper-plane. In 
the very simplified case of 3 objective functions and 2 divisions, 
we obtain a triangle where vertices have coordinates (1, 0, 0), (0, 
1, 0) and (0, 0, 1), Reference points are obtained by dividing each 
triangle segment in two parts. This gives 6 reference points (one 
for each apex and one for each segment center). With 3 divisions, 
we obtain 10 reference points because the triangle surface also has 
reference points uniformly placed on it. Individuals are then asso­
ciated to a reference point as follows. The half straight line con­
necting the coordinate marker origin to a reference point is called 
a reference line. We compute the perpendicular distance between 
an individual and each reference line. The individual is associ­
ated with the reference point corresponding to its closest reference 
line. For each reference point, the algorithm counts the number of 
individuals of the k first fronts that are associated with it. Each 
individual of last front Fl is associated to a reference point as a po­
tential individual for the selection. Then for choosing an individual 
in Fl for filling the next population, the algorithm looks for the first 
found reference point which has the smallest individual count. If 
the reference point has at least one associated individual in Fl, the 
closest individual is chosen and added to the population. This is 
repeated until the next population (under construction) has N indi­
viduals. 

5. COMPARISON SETUP 
In this section, we describe the experimental setup that we will 

use to compare NSGA-II and NSGA-III . 
The websites included in the dataset have been chosen to keep 

as much as possible a diversity in terms of number of HTML el­
ements, number of used colors and because they may cause read­
ability issues for people with disabilities. Website element number 
varies from dozen to hundreds of elements. 

Due to the non determinism of the studied algorithms (crossover 
and mutation operators are indeed stochastic techniques), we repeat 
many times each configuration in order to smooth random effects. 
Configurations include variation of the population size, aggregation 
of objective functions or not, stopping criteria, preference sets, etc. 

In order to remain in the framework of our previous results [14] 
and increase confidence in the results, we use similar global con­
figurations described in Table 1. For each configuration, we run the 
algorithm 30 times to reduce random effect impacts. The number of 
generations is not our stopping criterion, unlike usual practice. We 
decided to stop an execution either if we have a solution that satis-
fies all the preferences, or if execution lasts more than 10 seconds. 
These two stopping criteria are combined to many other measure­
ments to compute comparison tables in Section 6. For this experi­
ment, we defined three general preferences, which match practical 

problems for people with low vision. 

• GP1 : Have an uniform global background color brightness. 

•	 GP2 : Have a minimal contrast between the text and its direct 
background. 

• GP3 : Substitute an original color with a close one. 

When we associate a general preference GPi to a specific web-
site, we obtain many preferences Pi corresponding to each element 
or element group on which the preference can be applied. For 
example, considering the last general preference GP3 (Substitute 
an original color with a close one), if n colored elements on the 
page have a chance to be modified, we will obtain n preferences. 
When this preference is defined/selected by the user, each element 
included in the adaptation process is linked to its original color by a 
function comparing the distance with new color. The second pref­
erence GP2 (requesting a minimal contrast between text and direct 
background) is defined to get a minimal brightness contrast for each 
text on a page regarding its background. The brightness used in the 
contrast computation is the relative perceived brightness defined in 
WCAG 2.0 [43]. This constraint is used to increase the readability 
of documents. The uniform background brightness general pref­
erence GP1 is defined to set a global constraint between all back­
ground brightnesses on the page. It can be used to avoid dazzle due 
to the presence of light elements near dark elements. 

In our context, users define their own preferences. This is not 
based on guidelines, like WCAG 2.0. 

In this setup, we use four main different preference sets plus their 
aggregated version. 

S1 = P2 (9) 
S2 = P2 ∪ P3 (10) 
S3 = P1 ∪ P2 (11) 
S4 = P1 ∪ P2 ∪ P3 (12) 

The first preference set S1 contains only one general preference. 
It is defined by a user with difficulties in perceiving colors or light­
ness, and who wants to increase contrast. The S2 preference set 
includes P2 and P3 preferences. This configuration is used when 
a user wants to increase brightness contrast to improve readabil­
ity, while avoiding changing a lot of colors regarding the original 
page color context. The third preference set S3 also includes P2 

preferences but here, together with P1 preferences. The result of 
adaptation does not take care about the original color context but 
applies new background colors to get similar brightness on the en-
tire page. The last preference set P4 is the combination of all P1, P2 

and P3 preferences. We want at the same time a minimal contrast 
between text and its direct background, changing all backgrounds 
to get similar brightness, while choosing colors close to the original 
ones. 

Genetic algorithms use objective functions to assess preferences. 
To implement the minimal contrast function, we compare the re­
sult of the brightness contrast function with a predefined threshold. 
The comparison result is a quality indicator (satisfaction). All ob­
jective functions representing preferences used in this experiment 
are based on this pattern (comparing a value with a threshold). In 
our experiment, we consider either one objective function for each 
preference, or aggregated objective functions that encapsulate sev­
eral preferences (and reduce the number of objective functions). 
The number of aggregated functions is a parameter of our experi­
ment. 

Shared parameters are detailed in Tables 1 and 2. Due to specific 
parameters of each algorithm, configurations take into account the 



NSGA version. Population size is a parameter of NSGA-II, while 
for NSGA-III, population is calibrated using the number of refer­
ence points. Tables 3 and 4 give a summary of the parameters used 
for each version. 

Table 1: Global configuration summary. 

Parameter Value(s) 

Crossover (resp. Mutation) prob. 0.94 (resp. 0.06) 
Max exec time 10s 

Max generations unlimited 
Repeat 30 times 

Table 2: Preferences configuration summary. 

Parameter Value(s) 

Preference sets 4 
Maximal brightness difference 40% 

Maximal color distance 40° 
Minimal contrast 30% 

Table 3: NSGA-II concerns configuration summary. 

Parameter Value(s) 

Population Size 250 

The next section presents and discusses the results obtained when 
applying the configurations on the chosen website panel. 

6. EXPERIMENT RESULTS 
The presented results extend previous results obtained for NSGA­

II [14]. We apply NSGA-II to more websites, with a version of the 
algorithm which fixes some limitations of the color distance func­
tion. Besides, we compare NSGA-III results on the same websites, 
in order to evaluate the assumption of superiority of NSGA-III. 
These websites have been chosen by one of the co-authors who has 
low vision. Other widely visited websites that we observed have no 
serious problems and were not really interesting to be included in 
our experiment. 

6.1 Godaddy with NSGA-II 
We first analyze into details the Godaddy website adaptation, 

which is an intermediary problem in terms of number of HTML 
elements used, structural parts and number of colors. 

Table 5 gives execution times, number of generations and in­
formation about non terminated executions for all non-aggregated 
preference sets with NSGA-II. 

The preference sets S1 and S3 have at least one good solution 
returned by NSGA-II. 

Nearly all executions lead to a good solution with S1. Only 4% 
of executions cannot find a good solution and reach 10s. Finding 
new colors for having the required minimal contrast is not too dif­
ficult in this case. There are 22 color variables: 14 text colors and 
8 background colors. Several text color variables can be linked by 
a contrast constraint to a same background color variable, when 
these texts share the same background. S1 contains 14 constraints. 
Because we are not working with aggregated objective functions, 
we also have 14 objective functions. 

Table 4: NSGA-III concerns configuration summary. 

Parameter Value(s) 

Table 5: NSGA-II “Godaddy” with non aggregated preference sets

 Prefs. set      
S1 S3 S2 S4

 

The second preference set S3 is a little more complex. In ad­
dition to the constraints of S1, we add a global constraint linking 
all background color brightnesses. This constraint is satisfied when 
all backgrounds have a similar brightness, or in other words, when 
the difference between the lightest and the darkest background is 
low. This new constraint complicates the problem. As a result, 
only 6% of executions give a good solution before 10s. When ex­
ecutions reach 10s, the number of satisfied objective functions is a 
good quality indicator. Here, on average, about 68% of objective 
functions are satisfied (9.5 out of 14), for S1, and about 69% (10.4 
out of 15) for S3. 

The two last columns of Table 5 refer to S2 and S4 preference 
sets. These two sets are much more complex and do not give good 
solutions in the given time. S2 and S4 have both all contrast con­
straints, such as S1 and S3, but S2 integrates the constraint of prox­
imity with original colors, and finally S4 has all constraints. Results 
are slightly different. There are 20% of satisfied objective functions 
for S2 versus about 21.4% for S4. In best cases, solutions satisfy 
about 30% of objective functions. Worst cases are about 12%. For 
NSGA-II, all executions have been made with a fixed population of 
250 individuals. 

The aggregation of objective functions allows us to address the 
known problem of NSGA-II, that drastically looses efficiency when 
the objective function number grows. Table 6 gives results for ag­
gregated objective functions. Aggregation is realized by creating 
two (aggregated) objective functions for each general preference 
GP2 and GP3. The global preference GP1 regarding the unifor­
mity of background color brightness cannot be aggregated because 
it only generates one preference linking all background color vari­
ables. 

We observe that this aggregation has a positive impact on the 
execution time and on finding a good solution. Whereas without 
aggregation, for the first preference set S1, 4% of executions could 
not terminated before 10s, now, with the aggregated preference set 
S1aggr (first column of Table 6) all executions return a good solu­
tion in 0.4s on average. There is also a significant improvement for 

Obj. Funcs. 

Exec. time (s) 
Average 

Standard deviation 
Min 
Max 

Generations 
Average 

Standard deviation 
Min 
Max 

Non cpltd. exec. 
Percentage 

Satisfied prefs. 
Standard deviation 

Min 
Max 

Minimum population size 256 
Divisions number from 2 to p 

14 15 36 37 

5.87 9.89 10.00 10.00 
1.64 0.53 0.00 0.00 
3.67 6.64 10.00 10.00 
10.00 10.00 10.00 10.00 

244 376 200 193 
64.8 27.6 7.9 6.4 
154 264 192 183 
397 415 228 224 

4 94 100 100 
9.5 10.4 7.2 7.9 
0.5 3.8 1.3 1.4 
9 3 4 5 
10 14 10 12 



       

       

       

Table 6: NSGA-II “Godaddy” with aggregated preference sets Table 8: NSGA-III “Godaddy” with aggregated preference sets 

Prefs. set 

Obj. Funcs. 

Exec. time (s) 
Average 

Standard deviation 
Min 
Max 

Generations 
Average 

Standard deviation 
Min 
Max 

Non cpltd. exec. 
Percentage 

Satisfied prefs. 
Standard deviation 

Min 
Max 

S1aggr S3aggr S2aggr S4aggr 

2 3 4 5 

0.41 
0.05 
0.32 
0.49 

0.46 
0.10 
0.32 
0.84 

10.00 
0.00 

10.00 
10.00 

10.00 
0.00 
10.00 
10.00 

21 
2.5 
17 
26 

22 
5.1 
16 
41 

414 
2.4 
409 
418 

386 
1.9 
383 
390 

0 
– 
– 
– 
– 

0 
– 
– 
– 
– 

100 
0.6 
0.8 
0 
2 

100 
1.3 
0.4 
1 
2 

S3aggr preference set, with all executions returning a good solu­
tion, while for S3, we had 94% of non-completed executions. The 
average execution time is about 0.46s with aggregation, when it is 
about 10s without. Executing NSGA-II on Godaddy website with 
S2aggr and S4aggr does not produce any good solution before10 
seconds (as in the non-aggregated case). For these two last cases, 
there is no significant improvement, but we can notice that there 
is no particular performance loss, results are similar. Aggregation 
somewhat simplifies the problem by reducing the number of ob­
jective functions to be processed by the algorithm. In NSGA-II the 
number of objective functions is a main complexity component. We 
observe a significant improvement for the simplest configurations. 

6.2 Godaddy with NSGA-III 
The third version of NSGA is presented as a "many-objective" 

evolutionary algorithm, able to deal with much more objective func­
tions while keeping good efficiency. We apply the same set of pref­
erences on the same problem (without any aggregation), now with 
NSGA-III (Table 7). In this case, population is sized regarding the 
number of objective functions and the number of divisions (Sect. 
4). 

Table 7: NSGA-III “Godaddy” with non aggregated preference 
sets 

Prefs. set 

Pop. size 256 256 668 704 
Obj. Funcs. 14 15 36 37 

Exec. time (s) 
Average 2.71 3.53 10.00 10.00 

Standard deviation 0.48 0.70 0.00 0.00 
Min 1.76 2.43 10.00 10.00 
Max 3.63 5.78 10.00 10.00 

Generations 
Average 

Standard deviation 
Min 
Max 

Non cpltd. exec. 
Percentage 

Satisfied prefs. 
Standard deviation 

Min 
Max 

S1 S3 S2 S4 

56 65 12 10 
9.8 12.7 0.0 0.2 
37 45 12 10 
75 106 12 11 

0 0 100 100 
– – 15.5 15.3 
– – 1.2 1.2 
– – 13 13 
– – 18 18 

Prefs. set 
S1aggr S3aggr S2aggr S4aggr 

Pop. size 256 256 256 256 
Obj. Funcs. 2 3 4 5 

Exec. time (s) 
Average 0.38 0.40 9.11 10.00 

Standard deviation 0.04 0.04 2.68 0.00 
Min 0.27 0.31 0.94 10.00 
Max 0.46 0.48 10.00 10.00 

Generations 
Average 

Standard deviation 
Min 
Max 

Non cpltd. exec. 
Percentage 

Satisfied prefs. 
Standard deviation 

Min 
Max 

21 21 382 392 
2.3 1.9 111.6 3.4 
16 17 43 385 
26 25 432 400 

0 0 90 100 
– – 2.5 3.0 
– – 0.6 0.7 
– – 1 2 
– – 3 4 

The NSGA-III algorithm brings an overall improvement. In the 
two first cases (S1 and S3), the execution time is really reduced. 
S1 execution time is reduced by twofold and S3 execution time 
by threefold. Moreover, in both cases all executions give a good 
solution. For the last two cases, even if executions do not return 
good solutions, the quality of solutions returned when the algorithm 
reaches 10s is really improved. With NSGA-III, we have about 
43% of satisfied objective functions in S2 and S4 versus about 21% 
with NSGA-II. The maximal and the minimal number of satisfied 
objective functions are also increased. 

Table 8 gives results of the application of NSGA-III on the four 
preference sets with objective function aggregation. We saw in Ta­
ble 6 that aggregation of objective functions had a positive impact 
on the computation time and on the quality of solutions returned 
in case of non-completed executions. With NSGA-III, aggregation 
also has a positive impact. While execution times are reduced, the 
quality of solutions returned when the algorithm reaches 10s (S2 or 
S4) is improved. This quality is about 60%. Thus we observe that, 
even if NSGA-III was designed to deal with many objectives, the 
aggregation may be useful in our context. 

We also notice that NSGA-III takes more time to complete a 
generation. But results show that it often needs less generations 
to converge to a good solution than NSGA-II. These results give 
us an intuition about trends regarding the two algorithm versions. 
Next section compares the two algorithms on several very different 
websites. 

6.3 A wider comparison 
Tables 9 and 10 show more results on execution of NSGA-II and 

NSGA-III for all preference sets. These tables allow us to compare 
results on 9 real web pages. The first table gives figures for execu­
tions without aggregation, while the second one gives figures with 
objective function aggregation. 

When each preference is implemented as one objective function 
(no aggregation), the first preference set S1 gives good results on 
a large part of the studied websites (Table 9). The two last web-
sites have many HTML elements. The computation of a minimal 
brightness contrast for the text regarding its background is not too 
difficult for several web pages. NSGA-III gives better results for 
this preference set. In particular, we have a real improvement on 
the two last cases: The UBOFormation example returns at least 
one good solution for all executions and we can get some good 



       

       

Table 9: (Time / non-completed executions / satisfaction for non-completed executions) Global comparison on several real websites 

Pref. set S1 S3 S2 S4 

Algorithm NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III 
units s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % Websites 

Godaddy 
Parempuyre 

Legibase 
NFB 

BLFamilyPortal 
BLMyAccount 

GDArchitect 
UBOLEA 

UBOFormation 

5.87 / 4 / 67.9 
0.69 / 0 / – 
0.34 / 0 / – 
0.39 / 0 / – 
3.77 / 0 / – 
2.24 / 0 / – 
0.70 / 0 / – 

10 / 100 / 32.4 
8.97 / 54 / 61.8 

2.71 / 0 / – 
0.29 / 0 / – 
0.12 / 0 / – 
0.15 / 0 / – 
2.53 / 0 / – 
0.94 / 0 / – 
0.25 / 0 / – 

9.95 / 87 / 86.7 
5.88 / 0 / – 

9.89 / 94 / 69.3
 
0.78 / 0 / –
 

0.71 / 4 / 83.3
 
0.46 / 0 / –
 

9.92 / 97 / 92.3
 
9.40 / 90 / 90
 
0.72 / 0 / –
 

10 / 100 / 16.4
 
10 / 100 / 34.4
 

3.53 / 0 / –
 
0.41 / 0 / –
 
0.18 / 0 / –
 
0.21 / 0 / –
 

5.67 / 17 / 92.3
 
1.74 / 0 / –
 
0.30 / 0 / –
 

10 / 100 / 75.5
 
7.33 / 17 / 94.4
 

10 / 100 / 20 
10 / 100 / 31.4 
10 / 100 / 48.5 
10 / 100 / 58.6 
10 / 100 / 21.7 
10 / 100 / 22.3 
10 / 100 / 35 

10 / 100 / 17.7 
10 / 100 / 19.3 

10 / 100 / 43.1 
9.95 / 97 / 82.9 
5.80 / 20 / 90.8 
3.81 / 4 / 92.9 
10 / 100 / 43.1 
10 / 100 / 61.9 
9.20 / 80 / 88.3 
10 / 100 / 34.8 
10 / 100 / 37.8 

10 / 100 / 21.4 10 / 100 / 41.4 
10 / 100 / 33.2 10 / 100 / 79.5 
10 / 100 / 40.7 7.16 / 44 / 87.1 
10 / 100 / 56 6.49 / 34 / 92.7 

10 / 100 / 21.6 10 / 100 / 41.9 
10 / 100 / 23.3 10 / 100 / 58.5 
10 / 100 / 34.7 9.47 / 87 / 85.8 
10 / 100 / 18.2 10 / 100 / 34.1 
10 / 100 / 19.5 10 / 100 / 37.9 

Table 10: (Time / non-completed executions / satisfaction for non-completed executions) Global comparison on several real websites with 
objective functions aggregation 

Pref. set S1aggr S3aggr S2aggr S4aggr 

Algorithm NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III 

Websites 
units s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % s / % / % 

Godaddy 0.41 / 0 / – 0.38 / 0 / – 0.46 / 0 / – 0.40 / 0 / – 10 / 100 / 15 9.11 / 90 / 62.5 10 / 100 / 26 10 / 100 / 60 
Parempuyre 0.24 / 0 / – 0.18 / 0 / – 0.24 / 0 / – 0.19 / 0 / – 7.52 / 74 / 47.5 1.97 / 14 / 75 8.16 / 80 / 60 4.34 / 37 / 80 

Legibase 0.27 / 0 / – 0.10 / 0 / – 0.21 / 0 / – 0.13 / 0 / – 7.17 / 70 / 52.5 0.96 / 4 / 75 8.13 / 80 / 54 1.89 / 4 / 80 
NFB 0.22 / 0 / – 0.13 / 0 / – 0.24 / 0 / – 0.17 / 0 / – 4.25 / 37 / 55 0.58 / 0 / – 7.23 / 70 / 54 2.41 / 10 / 80 

BLFamilyPortal 0.48 / 0 / – 0.44 / 0 / – 0.83 / 4 / 66.7 0.52 / 0 / – 10 / 100 / 30 8.19 / 80 / 65 10 / 100 / 22 10 / 100 / 60 
BLMyAccount 0.52 / 0 / – 0.32 / 0 / – 0.90 / 4 / 66.7 0.38 / 0 / – 8.50 / 84 / 47.5 4.83 / 44 / 72.5 10 / 100 / 34 9.72 / 97 / 72 

GDArchitect 0.22 / 0 / – 0.15 / 0 / – 0.31 / 0 / – 0.17 / 0 / – 6.87 / 67 / 47.5 1.36 / 7 / 75 6.59 / 64 / 64 3.00 / 20 / 80 
UBOLEA 2.78 / 24 / 45 1.82 / 14 / 50 10 / 100 / 20 10 / 100 / 60 10 / 100 / 20 9.70 / 97 / 55 10 / 100 / 26 10 / 100 / 46 

UBOFormation 0.47 / 0 / – 0.45 / 0 / – 1.46 / 10 / 66.7 0.45 / 0 / – 10 / 100 / 22.5 9.40 / 94 / 60 10 / 100 / 40 9.41 / 94 / 68 

solutions for the UBOLEA example. Results with the second pref­
erence set S3 confirm these trends. The preference sets S2 and S4 

give another important information. In addition to finding some 
good solutions when it is not the case with NSGA-II, NSGA-III 
highly increases the level of satisfaction of returned approximate 
solutions. Indeed, when an execution does not return a good solu­
tion, either because it does not find one existing good solution, or 
because such solution does not exist (conflict between preferences), 
the solution quality has a huge importance. When we have 34.7% 
of satisfaction (for non-completed executions) on GDArchitect ex-
ample with NSGA-II and the S4 preference set, we reach 85.8% 
with NSGA-III. With the same configuration on Parempuyre ex-
ample, we have now about 80% with NSGA-III, when it is about 
33% with NSGA-II. 

We have seen that the objective function aggregation also has a 
positive impact with NSGA-III on the Godaddy example. Table 
10 shows this behavior for other websites. The UBOLEA example 
website, with S3 preference set, shows a significant improvement 
in the returned solution quality, even if both NSGA-II and NSGA­
III do not return any good solution. The S4 preference set case, 
actually shows a significant improvement in the number of execu­
tions leading to a good solution, in execution time and in the quality 
of solutions. 

To summarize, NSGA-III is a real enhancement of its prior ver­
sion NSGA-II. NSGA-III allows us to obtain good solutions for 
more difficult problems. Moreover, the quality of the returned so­
lution, when the solution does not satisfy all preferences, is really 
better. 

6.4 Threats to validity 

6.4.1 Construct validity 
Experiment has been made with several distinct configurations 

for the algorithms. Two algorithms have been used with common 
and specific parameters. The preference sets and the configura­

tions have been chosen for analyzing benefit of the new version 
of NSGA and the effect of aggregation on it. Aggregation that was 
positive for NSGA-II as it is shown in our previous paper [14] keeps 
similar impact for NSGA-III. The experiment allows us to gather 
many information including execution time, number of generations 
and number of satisfied objective functions. From these figures, 
we compute many other indicators, to get for example the number 
of executions reaching 10 seconds. Experiment results allow us to 
know if the approach can be used in a real case study. When an exe­
cution returns at least one good solution in less than 10 seconds, we 
focus on the elapsed time and on the number of generations regard­
ing this time. When an execution does not return any good solution 
in less than 10 seconds, we give information about the number of 
satisfied objective functions that give a good estimate of the quality 
of the returned solution. Here the population size for NSGA-II has 
the same value as in our previous paper. However, this value could 
be changed to measure its effects. In the two algorithms, we use a 
same and fixed crossover and mutation probability. They could be 
changed to evaluate the impact of this probability. 

6.4.2 Internal validity 
Information on the studied websites has been collected by three 

persons. Colors of HTML elements have been obtained using a 
software picking screen pixel color: “gcolor2” on Linux system 
and the digital colorimeter included in the MAC OS platform. We 
simplify web pages by defining a new model of variables and con­
straints used by resolution algorithms. 

6.4.3 External validity 
The experiment is based on a selection of 9 very different web-

sites. These websites have been chosen from noticed accessibility 
problems for people with low vision and also regarding their di­
versity in terms of number of HTML elements or number of colors 
used. We focus our study on brightness, contrast and colors because 
they represent widely encountered difficulties for people with low 



vision. Moreover they are issues on which assistive technologies 
do not bring relevant adaptation. The diversity of input data (web­
site, preferences, resolution algorithms used and their parameters) 
is significant. 

6.4.4 Conclusion validity 
For each configuration (website, algorithm, preference set, etc.), 

we made 30 executions. We also tested our algorithms with 60 
executions, and we obtained similar results. In our results, we con­
sidered many measures including average, min, max and standard 
deviation for execution time, number of generations and number of 
satisfied objective functions. Previous papers [14, 15] give other 
comparisons, for example with an exact algorithm from Preference 
Theory. 

7. CONCLUSION 
Assistive technologies may provide a relevant help for people 

with low vision. However, their general purpose can lead to irrele­
vant adaptation for people with specific needs. The main drawback 
of these solutions is the important alteration of the page appear­
ance, which corresponds to the designer preferences. Indeed, col-
ors may be completely changed, page layout can be modified and 
it is quite impossible to target a structural part of a page like the 
menu. Our approach works at HTML element level, and with prop­
erties that describe the elements. Moreover, it computes an adap­
tation for specific user preferences, while taking into account the 
designer preferences. These preferences may be inconsistent. We 
compare the efficiency of two evolutionary algorithms to find a rel­
evant adaptation in the huge search space of possible adaptations. 
The comparison is done on real websites that are very different. 
We obtain results that show general trends. We also study the be­
havior of aggregating objective functions. The aggregation allows 
us to reduce running time, and to strongly increase the number of 
executions that return good solutions. NSGA-III, used with objec­
tive function aggregation, gives the best results. As future work, 
we plan to investigate and compare results obtained with a CSP 
(Constraint Satisfaction Problem) approach and with a deep learn­
ing approach. Currently, gathering information from web pages is 
manually done. The structural object recognition in HTML pages 
is tricky and we are working on an approach to automatize this ac­
quisition. We are also planning experiments conducted with a panel 
of people with low vision to reinforce our findings. 
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