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ARTICLE INFO ABSTRACT

Background: Vaulting is a walking strategy qualitatively characterized in clinics by the sound ankle plantiflexion
in midstance to assist prosthetic foot clearance. Even though potentially harmful, this strategy is often observed
among people with transfemoral amputation to secure clearance of the prosthetic limb during swing phase. The
aim of the study is to provide a quantitative analysis of the evolution of the vaulting strategy in challenging

Article history:
Received 19 September 2014
Accepted 23 March 2015

ge;'mg) rd.s" . situations of daily living.
R::; eviation Methods: 17 persons with transfemoral amputation and 17 able-bodied people participated in the study. Kine-
Side-pslopes matic and kinetic gait analyses were performed for level walking, 10% inclined cross-slope walking, 5% and

12% inclined slope ascending. To study vaulting strategy, peak of generated power at the sound ankle at
midstance was identified and quantified in the different walking situations. In particular, values were compared
to a vaulting threshold corresponding to a peak of generated power superior to 0.15 W/kg.
Findings: The vaulting threshold was exceeded for a larger proportion of people with amputation during cross-
slope locomotion and slope ascent than during level walking. In addition, magnitude of the peak of generated
power increased significantly compared to level walking in these situations.
Interpretation: Vaulting seems to be widely used by patients with transfemoral amputation in daily living situa-
tions. The number of patients using vaulting increased with the difficulty of the walking situation. Results also
suggested that patients could dose the amount of vaulting according to gait environment to secure prosthetic
toe clearance. During rehabilitation, vaulting should also be corrected or prevented in daily living tasks.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

People with transfemoral amputation have lost their knee and ankle
joints. Prosthetic components are restoring part of the missing joints
functions. For example, during swing phase of gait, the prosthetic
knee must permit foot clearance. Prosthetic knee flexion during swing
phase depends on hip flexor muscle activity from the end of the stance
phase (maximum of hip flexion moment) and on the prosthetic compo-
nent properties (e.g., friction knee vs microprocessor-controlled knee)
(Bellmann et al., 2010; Vrieling et al., 2008). In the case of insufficient
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hip and prosthetic knee flexion or inadequate timing of knee extension,
the prosthetic foot can touch the ground during swing phase of the
prosthetic side, creating a risk of fall. From the literature, every people
with transfemoral amputation has a falling incidence of once a year
(Frossard et al., 2010) and more than half of lower limb amputee people
are afraid of falling or are regularly falling (Miller et al., 2001).

To take comfort during prosthetic limb swing phase, people with
transfemoral amputation resort to diverse walking strategies aiming at
increasing the distance between the prosthetic foot and the ground.
Gait strategies described in the literature include: the circumduction
of the hip, the hip hiking strategy and the vaulting strategy (Michaud
et al., 2000; Perry, 1992; Smith et al., 2004). The latter was described
by Smith et al. (2004) as the “premature midstance plantar flexion by
the sound limb” which “assists toe clearance of the prosthetic limb by
lifting the body”. Until now these strategies were mainly observed and
described during locomotion of people with transfemoral amputation
on flat surfaces.
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Inclination and uneven surfaces increase the risks to stumble when
the prosthetic limb is mobile above the ground. Surface inclination in-
duces gait adjustments to ensure toe clearance during swing phase of
gait particularly during slope ascent or for the upstream lower limb dur-
ing cross-slope walking (Dixon and Pearsall, 2010; Prentice et al., 2004).
As regards non-amputee gait, considered as a reference, these adapta-
tions are observed with the modification of lower limb joints kinematics
in the sagittal plane in late stance phase and swing phase (Dixon and
Pearsall, 2010; Gates et al., 2012; Prentice et al., 2004; Silder et al.,
2012).

Nowadays, most of patients with transfemoral amputation are fitted
with prosthetic feet unable to modify the ankle dorsiflexion angle dur-
ing swing phase as observed in able-bodied participants (Prentice
et al., 2004). People with transtibial amputation ensure toe clearance
during swing phase of the prosthetic side by increasing the residual
knee and hip flexion angles during slope ascent (Fradet et al., 2010;
Vickers et al., 2008), during stairs ascent (Ramstrand and Nilsson,
2009), during uneven surfaces walking (Gates et al., 2012) or during ob-
stacle crossing (Buckley et al., 2013; Vrieling et al., 2007). For patients
with transfemoral amputation, adjustments in stairs and slopes with
the prosthetic knee and the residual hip during swing phase of the
prosthetic side are either reduced compared to transtibial amputee
people or even absent with some friction prosthetic knees (Vrieling
et al., 2008), and are different depending on micro-processed knees
(Bellmann et al., 2010). In (Vrieling et al.'s (2007) study, video record-
ings of 8 patients with transfemoral amputation crossing an obstacle
with the prosthetic side showed circumduction movements of the hip
combined with plantiflexion movements of the sound ankle in support
just when getting over the obstacle.

Vaulting strategy is often used in this population to guarantee toe
clearance of the prosthetic limb even on flat surfaces (Drevelle et al.,
2014). The present study will focus on vaulting gait identification and
quantification in challenging situations of daily living in individuals
with transfemoral amputation. Although this strategy is considered as
a deleterious gait deviation by rehabilitation staff, only one very recent
study proposed to quantify it during level walking of people with
transfemoral amputation (Drevelle et al., 2014). The criterion used in
this study was the generated power during mid-stance at the contralat-
eral ankle of patients with transfemoral amputation. To our knowledge,
the evolution of this parameter in limiting situations of daily living has
not been investigated yet in the literature for people with transfemoral
amputation. In this context, the aim of the study is to quantify the
evolution of the sound ankle power in single limb support during
slope ascent and cross-slope walking compared to level walking in
people with transfemoral amputation.

2. Methods
2.1. Subjects

The protocol was approved by the local ethics committee and writ-
ten informed consent were obtained from all participants.

Seventeen subjects with transfemoral amputation (TF-Group) (age:
mean 37 years SD 10 years, height: mean 174 cm SD 9 cm, body mass:
mean 76 kg SD 10 kg) participated in the study. The population is pre-
sented in details in Table 1. All participants underwent clinical evalua-
tion to check for pain or any gait problems before recruitment.
Prostheses alignment was adjusted according to the author's expertise.
Seventeen able-bodied participants (age: mean 42 years SD 19 years,
height: mean 176 cm SD 11 cm, body mass: 72 kg SD 15 kg) were re-
cruited as a control population (CO-Group) with no vaulting strategy.

2.2. Protocol

All subjects followed the same protocol. Subjects were equipped
with a set of 54 reflective markers placed on landmarks of the whole
body (Pillet et al., 2014). 3D position of these markers during motion
was captured with an optoelectronic system (Vicon 8i, 100 Hz, Oxford
Metrics, Oxford, UK). Subjects walked at a comfortable self-selected
speed on a flat surface (level walking), on a cross-slope device inclined
of 10%, on a 5% inclined slope device (gentle slope) and on a 12% in-
clined slope device (steep slope). All walking devices were instrument-
ed with two force platforms (AMTI, 100 Hz, Watertown, MA, USA). Gait
analysis data obtained for level walking, slope ascent and cross-slope
walking with the prosthetic limb upstream were used in the study. At
least three valid trials were recorded. A trial was considered successful
when each lower limb of the participant was in full contact with each
force platform.

2.3. Data processing

A 13 segment model was created (foots, shanks, thighs, pelvis, trunk,
head, arms, lower-arms). Anatomical frames were defined for each seg-
ment of the model (Pillet et al., 2014). Spatiotemporal parameters and
lower limb joint kinematics and kinetics in the frontal, transverse and
sagittal planes were computed as described in Pillet et al. (2014) in
each walking situation (flat surface, downstream on cross-slopes, gentle
slope ascent, and steep slope ascent). Particularly, ankle power in the
sagittal plane was defined as the product of ankle moment and ankle
angular velocity in the sagittal plane, and normalized by body mass.
Ankle power in the sagittal plane was computed for participants with

Table 1
Characteristics of the participants with transfemoral amputation.
Amputation Fitting
Patient Side Cause Stump length Time Socket Prosthetic knee Prosthetic foot
(cm) (years)
TFO1 L Trauma 34 20 Ischial containment C-Leg® (Ottobock) 1C40 C-Walk® (Ottobock)
TF02 R Trauma 31 2 Ischial containment C-Leg® (Ottobock) Highlander® (Freedom)
TFO3 L Trauma 19 16 Ischial containment C-Leg® (Ottobock) 1C40 C-Walk® (Ottobock)
TF04 R Trauma 46 21 Knee-disarticulation prosthesisEnd-weight-bearing C-Leg® (Ottobock) Flex walk® (Ossur)
TFO5 L Trauma 37 16 Ischial containment C-Leg® (Ottobock) 1C60 Triton® (Ottobock)
TF06 R Tumour 41 1 Knee-disarticulation prosthesisEnd-weight-bearing C-Leg® (Ottobock) Flex walk® (Ossur)
TFO7 R Trauma 48 3 Knee-disarticulation prosthesisEnd-weight-bearing OH5® (Medi) ERF® foot + Multiflex® ankle (Endolite)
TFO8 L Trauma 38 2 Ischial containment Sensor® (Nabtesco) Variflex® (Ossur)
TF09 R Trauma 46 2 Knee-disarticulation prosthesisEnd-weight-bearing KX06® (Endolite) 1C60 Triton® (Ottobock)
TF10 L Trauma 36 - Ischial containment C-Leg® (Ottobock) Flex walk® (Ossur)
TF11 L Trauma 31 - Ischial containment C-Leg® (Ottobock) Flex walk® (Ossur)
TF12 L Trauma 27 3 Ischial containment C-Leg® (Ottobock) Flex walk® (Ossur)
TF13 L Trauma 27 34 Marlo Anatomical Socket (MAS®) RheoKnee® (Ossur) Reflex Shock® (Ossur)
TF14 L Trauma 34 5 Ischial containment Hybrid Knee® (Nabtesco) Variflex® (Ossur)
TF15 L Trauma 26 15 Marlo Anatomical Socket (MAS®) RheoKnee® (Ossur) Reflex Rotate® (Ossur)
TF16 L Trauma 34 4 Marlo Anatomical Socket (MAS®) Genium® (Ottobock) Elation® (Ossur)
TF17 L Trauma 36 16 Ischial containment Hybrid Knee®(Nabtesco)  Flex walk® (Ossur)
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transfemoral amputation at the contralateral ankle over the contralater-
al lower limb gait cycle, and for able-bodied participants at the left
lower limb over the left lower limb gait cycle. For each trial of each
participant, the peak of ankle power in the sagittal plane was quantified
during single limb support. This parameter was called FlexPwr and
expressed in W/kg. A negative value of FlexPwr indicates a maximum
of absorbed power at the sound ankle and a positive value of FlexPwr
indicates a maximum of generated power at the sound ankle during
single limb support in stance phase.

For the control population (CO-Group), mean and standard devia-
tion of the parameter FlexPwr were then computed over all trials of all
able-bodied participants in each walking situation.

In Drevelle et al. (2014), the same participants with transfemoral
amputation were screened for vaulting strategy during level walking
(flat surface situation). For all the participants clinically identified with
vaulting gait during level walking, FlexPwr was higher than 0.15 W/kg
(Drevelle et al., 2014). In addition, Silder et al. (2012) and Fradet et al.
(2010) showed in two groups of 16 able-bodied participants that
ankle power in the sagittal plane during single support remained
below this value when climbing 5%, 10% and 12% (7.5°) inclined slopes.
This value was used as a threshold and called “vaulting threshold”
across the paper. To detect any peak of generated power at the sound
ankle in mid-stance, the value of FlexPwr computed in each trial for
each participant with amputation was compared to this minimal value
(0.15 W/kg) in all walking situations in TF-Group.

Secondly, for patients with FlexPwr above the vaulting threshold for
all trials while walking on flat surface (FV-Group), the evolution of the
abnormal generated power by the sound ankle between level walking
and the other walking situations was investigated. Variations of the
parameter FlexPwr between the flat surface situation and all other
walking situations were computed. The variation is computed as the dif-
ference between the mean value of the parameter in a limiting situation
(slopes or cross-slopes) and the mean value of the parameter obtained
on flat surface. These variations are computed for each patient and aver-
aged among the FV-Group.

24. Statistics

The effect of the “walking situation” was tested on gait velocity and
FlexPwr in CO-Group, on gait velocity in TF-Group and on FlexPwr in
FV-Group, using a non-parametric Wilcoxon test for two paired samples
among situations (flat surface/cross-slopes, flat surface/gentle slope, flat
surface/steep slope). In order to investigate the effect of the walking sit-
uations on the variation (increase) of the parameter FlexPwr between
level walking and each other walking situation, a non-parametric
Wilcoxon test for two paired samples was performed on the variation
of the parameter FlexPwr between situations. For both statistical tests,
when the null hypothesis was rejected, a significant difference among
situations was considered for the parameter of the population with a
probability of P < 0.05 indicated as high when P < 0.001.

3. Results
3.1. Gait velocity

Average gait velocity and standard deviation obtained for TF-Group
and CO-Group in each walking situation are presented in Table 2. Gait
velocity in TF-Group is of same order of magnitude as in CO-Group
during level walking, cross-slope walking and gentle slope ascent. The
gait velocity was much lower for people with amputation compared
to controls during steep slope ascent.

3.2. CO-Group: Averaged FlexPwr for each walking situation

Fig. 1 (left part) shows mean curves of the ankle flexion power ob-
tained in CO-Group during level walking, cross-slope walking, gentle

Table 2

Gait velocity (m/s) of participants with transfemoral amputation (TF-Group) and control
subjects (CO-Group) in each walking situation. Mean value, standard deviation (SD) and
range [min; max] are given for each group.

TF-Group gait velocity CO-Group gait velocity

(m/s) (m/s)

Mean SD Range Mean SD Range
Flat surface 1.27 0.13 [0.97;1.46] 1.32 0.12 [1.02; 1.52]
Cross-slopes 1.14 0.17 [0.85;1.38] 1.15 0.15 [0.82; 1.49]
Gentle slope (ascent) 1.19 0.15 [0.99;141] 1.20 0.12 [0.83;1.48]
Steep slope (ascent) 1.09 0.14 [0.80;1.41] 1.19 0.16 [0.83;1.53]

slope ascent and steep slope ascent. Table 3 presents mean parameter
(FlexPwr) computed in CO-Group in all four walking situations. The
statistical analysis highlighted that the parameter FlexPwr significantly
increased between level walking and slope ascent by about 0.07 W/kg
for gentle slope and 0.27 W/kg for steep slope but remained far below
0.15 W/kg.

3.3. TF-Group: FlexPwr for each participant with transfemoral amputation
in each walking situation

Table 4 presents, for each patient, the parameter FlexPwr averaged
over all trials while walking on a flat surface, on cross-slopes with the
prosthetic limb upstream and while sloping gently and steeply up-
wards. Three to seven trials were analysed per situation per patient. In
five particular cases, experimental issues prevented from computing
FlexPwr for at least three trials (missing data in Table 4). When FlexPwr
exceeded the vaulting threshold, the trial was classified as vaulting tri-
als. The percentage of vaulting trials for each participant with amputa-
tion could then be computed.

According to Table 4, the vaulting threshold was overstepped
(FlexPwr > 0.15 W/kg) in all walking trials for eight patients out of sev-
enteen (47%) during level walking, for eight patients out of fifteen (53%)
during cross-slope walking with the prosthetic limb upstream and for
ten patients out of fifteen (67%) during gentle slope ascent. While walk-
ing uphill of the steep slope, ten patients out of sixteen (63%) showed a
maximum of generated power at the contralateral ankle above the
vaulting threshold in all recorded trials. In Table 4, for five patients
(TFO4, TFO5, TFO7, TFO8, TF16), curves of the contralateral ankle power
in the sagittal plane were not repeatable across trials. Particularly, for
TF04, TFO5 and TF16, the vaulting threshold, which never exceeded on
flat surface, cross-slopes and gentle slopes, was irregularly overstepped
during steep slope ascent. Irregular values above vaulting threshold
were also observed for TFO8 in almost all situations and TFO7 on
cross-slopes. Finally, only two patients (TFO6 and TF11) did not exceed
the vaulting threshold in all walking situations.

3.4. FV-Group: Variation of FlexPwr between level walking and the other
walking situations

Patients included in the FV-Group had 100% of trials on flat surface
with FlexPwr exceeding the vaulting threshold (Table 3). All patients
in the FV-Group (TF01, 02, 03, 12, 13, 14, 15, 17) also showed, during
single support of their contralateral ankle, a maximum generated
power above the vaulting threshold in all trials in the other walking sit-
uations. Fig. 1 (right part) displays mean sound ankle power curves in
all walking situations obtained by averaging results of the eight patients
in FV-Group. Table 5 shows the averaged variations of FlexPwr between
flat surface and the other walking situations for all patients in FV-Group.

In this group of patients, FlexPwr significantly increases between
level walking and cross-slope walking, gentle slope ascent and steep
slope ascent (P < 0.05). In addition, the mean variation of the maximum
generated sound ankle flexion power was significantly higher during
steep slope ascent than during gentle slope ascent and cross-slope
walking (P = 0.03 < 0.05).
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Fig. 1. Ankle flexion power (W/kg) as the percentage of gait cycle (%). Mean curves and corridors (one standard deviation) obtained at the left ankle during left limb gait cycle in CO-group
(left part) and at the controlateral ankle during controlateral limb gait cycle in FV-Group (right part) in all walking situations: flat surface (solid line), cross-slopes (dotted line), gentle
slope (dashed line), steep slope (dash-dotted line).

Table 3

Mean and standard deviation values of the parameter FlexPwr (W/kg) for control subjects (CO-Group)
in the four walking situations. A significant difference compared to level walking is indicated with * for

P < 0.05 and ** for P < 0.001.

CO-Group

FlexPwr (W/kg)

Mean SD
Flat surface —0.24 0.12
Cross-slopes (downstream) —0.26 0.09
Gentle slope (ascent) —0.17* 0.13
Steep slope (ascent) 0.03** 0.20
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Table 4

Mean and standard deviation (SD) values of FlexPwr parameter of each patient over all trials in each situation for contralateral limb in TF-Group. The percentage of trials (%) in each sit-
uation for which FlexPwr value was above vaulting threshold is given for each patient. When differing from 0% and 100% the number of trials above vaulting threshold are indicated out of
the number of valid trials in the situation. “~” = missing data.

Flat surface Cross-slopes (downstream) Gentle slope (ascent) Steep slope (ascent)

Mean SD % Mean SD % Mean SD % Mean SD %
TFO1 0.50 0.08 100% - - - 0.71 0.06 100% 1.63 0.23 100%
TF02 0.63 0.04 100% - - - 0.81 0.31 100% 1.40 0.25 100%
TFO3 043 0.14 100% 0.48 0.04 100% - - - 0.58 0.10 100%
TFO4 —041 0.03 0% —0.60 0.08 0% —0.27 0.04 100% 0.50 0.68 40% (2/5)
TFO5 —0.07 0.03 0% —0.21 0.17 0% —0.01 0.03 0% 0.13 0.17 25% (1/4)
TFO6 —0.02 0.00 0% —0.08 0.01 0% —0.08 0.02 0% —0.03 0.02 0%
TFO7 —0.05 0.04 0% 0.02 0.07 20% (1/5) 0.2 0.04 100% - - -
TFO8 0.15 0.17 33%(1/3) 0.31 0.31 50% (2/4) 0.55 0.23 100% 0.34 0.20 60% (3/5)
TF09 —0.15 0.08 0% 0.26 0.08 100% 0.45 0.15 100% 1.54 0.19 100%
TF10 0.04 0.01 0% 0.31 0.1 100% 0.02 0.05 0% 0.55 0.05 100%
TF11 0.07 0.05 0% 0.05 0.07 0% 0.00 0.01 0% 0.03 0.02 0%
TF12 0.32 0.12 100% 0.63 0.14 100% 0.44 0.2 100% 1.46 0.4 100%
TF13 0.66 0.08 100% 1.03 0.07 100% - - - 1.23 0.17 100%
TF14 0.37 0.09 100% 0.78 0.08 100% 0.82 0.15 100% 0.96 0.23 100%
TF15 0.81 0.18 100% 0.89 0.15 100% 1.02 0.12 100% 1.32 041 100%
TF16 —0.06 0.02 0% —0.17 0.05 0% —0.1 0.12 0% 0.35 0.36 60% (3/5)
TF17 0.35 0.14 100% 0.66 0.17 100% 0.62 0.31 100% 1.04 0.23 100%

4. Discussion

The study aims at quantifying the evolution of flexion power gener-
ation by the contralateral ankle during its single limb support, for sever-
al limiting situations of daily living during gait of people with
transfemoral amputation.

During normal walking on flat surface, a sound ankle joint absorbs
power during stance phase of gait (Perry, 1992). This absorbed power
is subsequent to the eccentrical work of the triceps when stretched as
the shank is moving forward (Perry, 1992). The absorbed ankle joint
power was actually observed in the control population of this study dur-
ing level walking, and also during cross-slope walking and gentle slope
(5%) climbing. During ascent of the steep slope, on the contrary a low
generated power (mean 0.03 W/kg, SD 0.20 W/kg) was observed at
the ankle in the control group during single limb support. This finding
is consistent with the curves drawn by Fradet et al. (2010) representing
ankle flexion power of sixteen able-bodied participants walking uphill
on a slope of 7.5° (12%) of inclination. These results highlighted the
necessity to generate power at the ankle from the single limb support
in this walking situation, which should contribute to rise the centre of
gravity.

In patients with transfemoral amputation, the ankle power curve at
the contralateral side during single support of the controlateral limb
was different between patients. Some patients showed a generated
power by the sound ankle at mid-stance above 0.15 W/kg. This generat-
ed power was shown to be a criterion of vaulting clinical gait strategy
for this population during level walking (Drevelle et al., 2014). Results
in CO-Group highlighted that ankle power remained on average
below this value in all walking situations, in agreement with Fradet
et al. (2010) and Silder et al. (2012). Consequently, a peak of generated
ankle power in the sagittal plane at mid-stance above the threshold

Table 5

Mean variation of FlexPwr between level walking (flat surface) and other walking situa-
tions in FV-Group. The second column of the table shows as an interpretation the relative
variation compared to the value of the maximum generated power measured for level
walking.

Increase of FlexPwr
(in %) compared to
flat surface

Variation of FlexPwr
(in W/kg) compared
to flat surface

Mean SD  Range Mean SD

[0.05;041] 62%  44% [10;111]

[0.12;045] 33% 13% [21;55]
[0.15;1.14] 158% 103% [35;356]

Range

Cross-slopes (downstream) 0.26  0.15
Gentle slope (ascent) 024 0.11
Steep slope (ascent) 071 033

value in cross-slopes and slope ascent should traduce vaulting gait strat-
egy. From the results, the number of patients affected and the evolution
of vaulting quantity can be discussed.

The method revealed that the number of patients with vaulting gait
increases in slopes and cross-slopes compared to level walking. In par-
ticular, 88% of recruited patients were at least once generating flexion
power at the contralateral ankle during steep slope ascent. These results
highlight the necessity to take into account vaulting gait in ecological
situations as most of people with transfemoral amputation resort to
this strategy when walking in their daily living environment.

Moreover, patients in the FV-Group, demonstrated an increase of the
maximum of generated sound ankle flexion power between level walk-
ing situation and the limiting walking situations. The estimated increase
for steep slope ascent (mean 0.68 W/kg, SD 0.39 W/kg) was significantly
higher than for gentle slope ascent (mean 0.29 W/kg, SD 0.16 W/kg) and
significantly higher than for cross-slope walking (mean 0.33 W/kg, SD
0.15 W/kg). These variations suggest that patients adjust sound ankle
power generation according to the difficulty of the situations. In the spe-
cific case of the steep slope (12%), the power production can participate
to the propulsion essential for ascension, like observed in able-bodied
participants.

However, walking uphill of the 12%-inclined slope appeared to be
the most limiting situation for several reasons. First of all, gait speed de-
creased compared to level walking in all situations in amputee and non-
amputee groups of subjects. For patients with transfemoral amputation,
gait speed reduction was comparable to the one observed in control
subjects during locomotion on the cross-slope device and the gentle
slope (Table 1), while it was more important during locomotion on
the steep slope. This result is consistent with the decrease of gait
speed observed for people with transtibial amputation in the same situ-
ation (Langlois et al., 2014). Additionally, for three patients, an abnor-
mal generated ankle power was irregularly observed during steep
slope ascent. But these patients did not use vaulting gait in the other
walking situations. Then, it seems that this gait strategy could be used
to cross this particular situation. In addition, two other participants
with transfemoral amputation already showed irregular patterns
during cross-slope walking. In steep slope ascent, they either kept an
irregular use of vaulting gait or adopted it in all trials.

Finally, only two patients did not show any generated power values
higher than 0.15 W/kg in all tested walking situations. However, during
steep slope ascent, other compensatory strategies described in the liter-
ature like hip circumduction, and hip hiking, sometimes even combined
with an amplified trunk homolateral inclination, were clinically ob-
served (Starholm et al., 2010). Participants with amputation without
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generated ankle power in midstance or irregular sound ankle power
patterns were assumed to use other strategies to help for toe clearance
in this difficult situation. Qualitative video analysis did not reveal any
hip circumduction or amplified trunk homolateral inclination on the
population. More participants need to be recruited to investigate and
quantify in future work hip hiking strategy in slopes and cross-slopes.

Finally, the results showed that analysing the gait on steep slope in a
clinical environment could be an interesting way to exacerbate vaulting
gait to evaluate the risk that patients use this deleterious strategy in real
life conditions. In the same way, it could be used as a training situation
during rehabilitation.

Although this study provides a useful tool for clinical evaluation of
people with transfemoral amputation vaulting gait, fatigue was not
properly taken into account in the study. Indeed participants were
recorded on a limited amount of trials to obtain data in the different
situations. Moreover, vaulting threshold could be refined using gait
speed and maximum of generated ankle power during propulsion,
before use in clinical routine. In addition, relationship of vaulting gait
with prosthetic fitting was not investigated. Participants were fitted
however with similar types of prosthetic components.

5. Conclusions

This study is the first one evaluating the evolution of one specific gait
deviation between several daily living situations of locomotion. The
vaulting strategy is currently only identified in clinical practice using
visual criteria. Quantification with a power parameter allowed to esti-
mate the vaulting quantity. Results showed that the vaulting strategy
is widely used by people with transfemoral amputation to secure pros-
thetic limb swing phase ensuring toe clearance. It appeared that the
more difficult the situation is, the higher the number of patients using
this compensatory strategy. Indeed, on the one hand all patients with
transfemoral amputation using vaulting during level walking used it
in more limiting situations, and on the other hand, even if some patients
did not have recourse to the strategy on flat surfaces, they could use it in
limiting situations. Moreover, the study highlighted that patients were
able to dose out the quantity of vaulting according to the difficulty of
the situation relative to toe clearance of the prosthetic limb. Therefore
the vaulting strategy revealed itself as a gait pattern (conscious or un-
conscious depending on the patients) that contributed to the adaptation
in limiting situations to help for toe clearance. However, as the vaulting
strategy could be deleterious for people with transfemoral amputation,
this study supports the importance to take it into account in the rehabil-
itation process of the patients, particularly in limiting situations, which
are integral part of daily living.
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