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Background/Introduction: Motor learning plays a central role in daily life and in neurorehabilitation. Several
forms of motor learning have been described, among which motor skill learning, i.e. reaching a superior
level of performance (a skill) through a shift of the speed/accuracy trade-off. During the first stage of learning
a visuomotor skill, we observed differential patterns of evolution of the speed/accuracy trade-off in normal
subjects. Half of the subjects rapidly achieved successful motor skill learning with an early shift of the
speed/accuracy trade-off leading to a superior level of performance (shift pattern). The other subjects
attained only minimal global improvement due to a converse evolution of speed and accuracy (i.e. a respect
of the speed/accuracy trade-off: fit pattern). Functional magnetic resonance imaging (fMRI) was used to
explore the neural substrates underlying these differential patterns during the first stage of motor skill
learning in normal subjects.

Methods: Twenty right-handed normal subjects performed an implicit visuomotor learning task with their
non-dominant hand. The task (“circuit game”) consisted in learning to navigate a pointer along a circuit as
quickly and accurately as possible using a fMRI-compatible mouse. Velocity, accuracy, and performance
indexes were used to characterise the motor learning pattern (shift/fit) and to perform fMRI correlation
analysis in order to find the neural substrate associated with the shift and fit patterns during early motor
skill learning.
Results: Nine subjects showed a fit pattern (fitters), and eleven, a shift pattern (“shifters”). fMRI analyses at
whole group level (ANOVA) and at sub-group level demonstrated that the supplementary motor area
(SMA) was more activated in “shifters” than in the “fitters” groups and that the BOLD activation within the
SMA correlated significantly with the on-line shift of the speed/accuracy trade-off in the “shifters” group.
Conclusion: Despite identical instructions and experimental conditions, during the first stage of motor skill
learning normal subjects spontaneously adopted different patterns that can be differentiated based on
distinct fMRI activation patterns. In this implicit visuomotor task, the SMA proper was the key area
underlying the achievement of early successful motor skill learning, i.e. on-line shift of the speed/accuracy
trade-off.
© 2012 Elsevier Inc. All rights reserved.
Background/introduction

Motor learning is a generic term encompassing several low and
high level processes that co-exist and form a continuum (Krakauer
andMazzoni, 2011). These motor learning processes are active during
the entire lifespan, from learning to walk to learning how to use a
computer or playing tennis. The ultimate purpose of motor learning
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may be to allow flexible behavioural adjustments while interacting
with a changing environment. With regard to a change in motor
performance, several forms of motor learning can be distinguished
such as use-dependent plasticity, adaptation learning and motor
skill learning (Krakauer and Mazzoni, 2011). Among these forms of
motor learning, motor skill learning is particularly fascinating since it
allows the apparently limitless diversification of the motor repertoire
by the acquisition of new skills through training. Motor skill learning
is defined as an improvement in sensorimotor performance gained
through training that involves a shift in the speed/accuracy trade-off
leading to a superior level of performance, i.e. the acquisition of new
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Fig. 1. fMRI conditions. 1: REST: fixation cross, 2: LEARNING: the subjects had to
navigate the cursor as quickly and accurately as possible, 3: EASY: the subjects had to
move the cursor between the two targets at comfortable speed (50% trials with vertical
movements, 50% with horizontal movements), 4: REPLAY: the subjects had to follow
the cursor displacement with their eyes while watching a videoclip of their last
LEARNING block, keeping the hands relaxed.
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capabilities or “skills” (Dayan and Cohen, 2011; Krakauer and Mazzoni,
2011).

Functional brain imaging studies consistently showed changes in
activation in a distributed network of areas involved in motor
learning, overlapping with the motor execution and control networks.
Several cortical areas such as the primary motor cortex (M1), the
supplementary motor area (SMA), the premotor cortex (PM), the
dorsolateral prefrontal cortex (DLPFC), and subcortical structures such
as the cerebellum and basal ganglia are involved in motor skill learning
(Debas et al., 2010; Ghilardi et al., 2000; Halsband and Lange, 2006).
Other studies suggest a key role for the cerebellum in adaptation
(Imamizu et al., 2000, 2003; Kawato et al., 2003). Recent observations
using functional connectivity demonstrate a particular involvement of
the SMA and prefrontal cortex in learning complex motor skills
(Taubert et al., 2011).

During a pilot study involving 18 normal subjects who trained to
improve their performance at playing with a “circuit game” involving a
speed/accuracy trade-off, we noticed that despite identical instructions
and experimental conditions normal subjects unconsciously developed
different behavioural patterns over the first 15 min of motor skill
learning. Three subjects presented a degradation of their performance
(“no learning”). Eight subjects developed rapidly a superior ability
involving an on-line shift in the speed/accuracy trade-off, i.e. canonical
motor skill learning (shift pattern). In the seven other subjects,
there was only minimal shift in the speed/accuracy trade-off since
the improvement of one operant characteristic (e.g. speed) was
counterbalanced by a concomitant deterioration of the other one
(e.g. accuracy), leading to less successful or delayed motor skill
learning (fit pattern).

The purpose of this study is to explore with functional magnetic
resonance imaging (fMRI) whether different neural substrates
underlie the development or the lack of an on-line speed/accuracy
trade-off shift in normal subjects during the first minutes of learning
an implicit visuomotor skill (“circuit game”).

Material and methods

Subjects

The experimental protocol was approved by the local Ethical
Committee (Comité d'éthique médicale, CHU Mont-Godinne) and
the study has been conducted according to the recommendations of
the Helsinki declaration. The normal subjects provided written
informed consent, after reviewing the inclusion criteria 1) being a
healthy volunteer aged 18–80 years, 2) being right-handed, and
exclusion criteria 1) having a pacemaker or other piece of metal in
the body, 2) being pregnant, 3) having suffered from stroke or any
brain damage, 4) being unable to perform the task or to understand
the instruction. Eighteen subjects participated in a behavioural pilot
study and 25 other subjects in the fMRI study. In the fMRI study,
five subjects were excluded from further analysis for the following
reasons: technical failure for one subject, another subject failed to
improve any behavioural parameters, two presented deterioration
of performance, and in the last subject T1 3DMRI shown the presence
of numerous asymptomatic white matter lesions compatible with
long-standing leukoaraiosis.

Paradigms

Behavioural pilot study
For 30 min, 18 subjects trained on a motor learning task (“circuit

game”) with their non-dominant left hand, alternating blocks of
learning (30 s) and rest (30 s). The “circuit game” consisted of moving
the pointer with a computer mouse along a circuit under visual control
(Fig. 1 part 3). Subjects were instructed to perform the task as quickly
and accurately as possible; accurately meaning keeping the pointer
within the track of the circuit. They were informed that the goal of the
session was to improve incrementally upon performance. This study
was performed to explore the temporal dynamic of the first stage of
learning this motor skill in normal subjects.

fMRI study
The subjects performed three consecutive learning runs of 8 min

with a MR-compatible mouse. Each run encompassed 3 conditions
and rest (fixation cross): LEARNING (circuit learning), EASY (easy
motor task) and REPLAY (Fig. 1). LEARNING required to perform the
“circuit game” as described previously (Behavioural pilot study
section) with exactly the same instructions. EASY required moving
the cursor back and forth between two bases, either in horizontal or
vertical direction, with the following instructions “Move the cursor
between the two targets at a comfortable speed, small overshoots
and undershoots are allowed”. EASY was designed to isolate the
activation related to lower aspects of movement execution under
visual control. During REPLAY, a videoclip of the last LEARNING was
played; the instruction being “Follow carefully with your eyes the
cursor displacements, while keeping your hand as relaxed as possible
on the MR-compatible mouse”. The REPLAY was designed to isolate
the activation related to visual and oculomotor activity. Each
condition was presented four times during each run, 84 volumes
(252 s) of each of the three conditions and rest were analysed. Before
these learning runs, the subjects performed a habituation run (40
activation volumes/ 40 rest volumes), which consisted of navigating
the cursor on a simple square, in order to familiarise the subject with
the MR environment, the concept of the task, and the manipulation of
the MR-compatible mouse (this was discarded from further analysis).
Visual feedback was projected on a screen; a mirror was placed on the
head coil.

Behavioural analysis

For quantifying performance improvements and motor skill
learning, the error, velocity and normalised jerk were analysed.
Error was defined as the surface area generated by the difference
between the real trajectory and the ideal trajectory in the
midline of the track. Velocity was the first derivative of the
position. Normalised jerk (NJ) was computed with the formula

NJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 � ∫Tend

Tstartjerk
2 tð Þdt � duration5=length2

q
(Caimmi et al.,

2008; Contreras-Vidal and Buch, 2003) where the jerk is the
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Table 2
Behavioural patterns of motor skill learning.

Motor skill learning No learning

Shift pattern Fit pattern

Pe

Pv

PI

LI

Pe: performance error, Pv: performance velocity, PI Performance index, LI learning index.
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third derivative of the position. The NJ reflects the smoothness of
the movements, with the underlying assumption that smoother
movements (smaller NJ) are associated with a higher level of
skill. Velocity, error and NJ, were averaged in mean error,
velocity and NJ using 3 s window (corresponding to the TR) for
each block of LEARNING.

Using the mean velocity and error, four indexes were computed to
model subjects' behaviour (Table 1). From the behavioural pilot
study, the error and velocity of the 18 subjects measured during the
15 min of actual training were averaged to extract constant error
and constant velocity values. For the fMRI study, the error index
(Pe) was computed as Pe=constant error/subject mean error. Pe is
a normalised index designed to increase when error diminishes. The
velocity index (Pv=subject mean velocity/constant velocity) is a
normalised index designed to increase when velocity increases. The
Performance Index (PI=Pv*Pe) was calculated every 3 s and averaged
for each learning block. Finally, the Learning Index (LI=[(PI−PI
initial)/PI initial]*100) was calculated for each learning blocks as a
percentage of the PI relative to the baseline performance during the
first block (PI initial). The LI was only used in order to describe the
evolution of the PI over time (% of evolution across the learning blocks),
i.e. to quantify the on-line performance dynamic during early motor
skill learning.

Based on these indexes, three different behavioural patterns of
motor skill learning were defined (Table 2). First, an on-line shift in
the speed/accuracy trade-off (shift pattern), involving a substantial
global performance improvement (LI) with improvement in both
speed and accuracy (Pv, Pe) or in one of these two parameters
without deterioration of the other one, suggesting a rapid and
successful improvement in the motor skill during the first minutes
of training. The subjects showing this pattern were refereed as
“shifters”. Second, a fit pattern involving a minimal improvement of
the LI without a significant shift of the speed/accuracy trade-off; i.e.
the improvement of one of the two parameters is systematically
associated with a concomitant deterioration of the other one. The
subjects showing this pattern were refereed as “fitters”; they did not
succeed in achieving consistent on-line performance improvement
during early motor skill learning. Third, a degradation of the LI with
deterioration of both speed and accuracy (Pv, Pe), or lack of any change
(no change in PI, speed or accuracy). The subjects showing this pattern
were excluded from analyses.

fMRI analysis

Imaging acquisition parameters
Functional MR images of brain activity were collected using a 3 T

scanner (Siemens Verio, Erlangen, Germany with a 32-channels
head coil) with repeated single-shot echo-planar imaging: echo
time (TE)=23 ms, flip angle (FA)=90°, matrix size=64×64, field of
view (FOV)=224×224 mm², slice order descending and interleaved,
slice thickness=2 mm (no gap), number of slices=59 (whole brain).
Repetition time (TR) was 3000 ms; the whole brain was scanned 160
times per run. A three-dimensional (3D) T1-weighted data set
Table 1
Behavioural indexes used in LEARNING.

Index Formula

Pe Constant error⁎/
subject error

Error index

Pv Subject velocity⁎/
constant velocity

Velocity index

PI Pe Pv Performance index
LI (PI−PI initial) /PI

initial 100
Learning index [percentage of evolution of PI across
the learning session regarding to the first block of
learning (30 s)]

⁎ Mean error and mean velocity calculated for the 18 subjects of the behavioural study.
encompassing the whole brain was acquired to provide detailed
anatomy (1 mm3) thanks to a ADNI sequence (TR=2250 ms,
TE=2.6 ms, FA=9°, matrix size=256×256, FOV=256×256 mm2,
192 slices, slice thickness=1 mm, no gap).

Data analysis
fMRI data were analysed using BrainVoyager QX (Version 2.3,

Brain Innovation, Maastricht, The Netherlands).

Pre-processing. Pre-processing consisted of a linear trend removal for
excluding scanner-related signal, a temporal high-pass filtering
applied to remove temporal frequencies lower than three cycles per
run, and a correction for small head movements using a rigid body
algorithm rotating and translating each functional volume in 3D
space. The data were corrected for the difference between the scan
times of the different slices and were not smoothed in the spatial
domain. In order to compare the localizations of activated brain
region across participants, all anatomical and functional volumes
were spatially normalised (Talairach and Tournoux, 1988) and the
computed statistical maps were overlaid on the 3D T1-weighted
scans. All the coregistrations were performed automatically and then
manually corrected. The functional data were analysed using one
multiple regression model (General Linear Model; GLM) consisting of
predictors, which corresponded to the particular experimental
conditions, and in which the beta weights quantify the potential
contribution of the predictors in explaining each voxel time course.
The predictor time courses were computed on the basis of a linear
model of the relation between neural activity and hemodynamic
response, assuming a rectangular neural response convolved with
hemodynamic function (Boynton et al., 1996).

Contrasts of interest and statistical analyses (Supplementary Table 3).
First, a random effect group analysis was performed with the 20
subjects. In order to find the areas activated in each condition
(LEARNING, EASY, and REPLAY), three basic contrasts of interests
(compared to rest) were explored: [LEARNING] (contrast weight: [1
0 0]) (areas involved in motor skill learning), [EASY] [0 1 0] (areas
involved in lower aspects of movement control and execution),
[REPLAY] [0 0 1] (areas involved in visual and oculomotor activity). In
addition, the [(LEARNING+EASY)−REPLAY] [1 1 −2] contrast was
computed in order to focus on the areas involved in motor learning
and control aspects. Follow up contrasts were averaged over the
whole cluster BOLD signal. All the contrasts were balanced.

Second, in all the areas found with [LEARNING], correlation analyses
were performed between the beta weights of LEARNING and the
performance (PI) values, in order to find out the key area(s) explaining
performance evolution. For this global correlation, the PI values of the
20 subjects were averaged for each learning block (12 blocks). Then,
the correlation was performed between the 12 beta weights LEARNING
and the 12 PI values.

Unlabelled image
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Third, to identify the neural substrates underlying the shift pattern
versus the fit pattern of motor skill learning, an ANOVA (second level
analysis) was computed with one within-subjects factor (conditions)
and one between-subjects factor (groups).

Results

Behavioural results

The 20 participants were 11 female and 9 male subjects aged from
18 to 62 years (mean±SD: 33.9±11); all were right handed. Eleven
of them displayed a shift pattern (36.7±11.8 years), and 9, a fit
pattern (30.7±9.6 years) (Fig. 2). At the end of the learning session,
the performance of the “shifters” had improved significantly more
(LI: 52.8%±87.7) than that of the “fitters” (LI: 6.2%±9.9) (p=0.002).
Furthermore, the NJ, which reflects the smoothness of the movements,
diminished across the learning blocks in the “shifters” (slope −2799)
whereas it increased in the “fitters” (slope +3202); this differential
evolution was statistically significant (p=0.048).

fMRI results

Whole group analysis
At q(FDR)b0.05 (t19=3.71; pUNCORRECTEDb0.0014), the random

effect analysis revealed 13 clusters for LEARNING, 14 clusters for
EASY and 10 clusters for REPLAY (Fig. 3, Supplementary Table 1).
The clusters observed in LEARNING were the right primary motor
cortex (M1, Brodmann Area BA 4), bilateral premotor cortex (PMC,
BA 6), supplementary motor area (SMA, BA 6), bilateral thalamus,
left putamen, left anterior cerebellum, and bilateral oculomotor and
visual cortical areas. The clusters found in EASY were the right M1
(BA 4), bilateral PMC (BA 6), SMA (BA 6), bilateral thalamus, bilateral
putamen, left anterior cerebellum, and bilateral oculomotor and
visual cortical areas. As expected, the activation in the oculomotor
and visual areas found in LEARNING and EASY was also activated in
REPLAY, in addition to the bilateral thalamus and PMC (BA 6), right
limbic lobe (BA 24), and right prefrontal cortex (BA 9).

Correlation analyses performed between the performance index
(PI) and beta weights of each area activated in LEARNING showed a
statistically significant effect exclusively in the SMA (r=0.60, pb0.0052).
The correlations in the other areas were not statistically significant; there
was no significant correlation with the NJ (Supplementary Table 2).In
Fig. 2. Learning Index (LI) evolution across learning blocks: The 12 LI values correspond to
Mean±SEM.
order to focus on the areas involved in motor control and learning
aspects, the [(LEARNING+EASY)−REPLAY] contrast was computed
at q(FDR)b0.05 (t19=5.93, pUNCORRECTEDb0.00001). This contrast
revealed significant activation in four areas: the right M1, right
thalamus, left anterior cerebellum, and SMA (Table 3). A comparison
between the “shifters” and “fitters” groups was performed in these four
regions of interest for the following contrasts: [EASY–REPLAY] [0 1−1],
[LEARNING–REPLAY] [1 0 −1], and [LEARNING−(REPLAY+EASY)]
[2 −1 −1] (Fig. 4). Again, the SMA was the only region where a
significant difference between “shifters” and “fitters” was found.
Moreover, this difference was observed only for the [LEARNING−
REPLAY], [LEARNING−(REPLAY+EASY)] and [LEARNING−EASY]
[1 −1 0] contrasts (t18=2,47, pb0.02; t18=2,49 pb0.02; t18=2.13,
pb0.04 respectively) and not for [EASY−REPLAY] contrast
(t18=1.40, p=0.18). There was no significant difference in the right
M1 (BA 4) (respectively for each contrast: t18=1.09, p=0.29;
t18=1.14, p=0.26; t18=1.09, p=0.29; t18=0.49, p=0.63), right
thalamus (t18=0.46, p=0.65; t18=0.99, p=0.33; t18=1.59,
p=0.13; t18=1.21, p=0.24), and left anterior cerebellum (t18=1.38,
p=0.18; t18=1.38, p=0.18; t18=1.04, p=0.31, t18=0.71, p=0.48).

Whole-brain ANOVA
In order to compare the “shifters” and “fitters” groups for each

condition, a second level ANOVA with one within-subject factor
(conditions) and one between-subjects factor (groups) was computed.
The F(4,72) test on the within-subject factor (conditions) showed a
significant activation at q(FDR)=0.05, pUNCORRECTEDb0.0001. The F(1,18)
test on the between-subject factor (groups) showed no significant
activation at q(FDR)=0.05, pUNCORRECTED=0.0002. The F(4,72) test on the
interaction between the two factors showed a significant activation
in several areas (q(FDR)=0.05, pUNCORRECTEDb0.0002). To localise
precisely the differences for this interaction, post-hoc analyses
with specific contrasts were computed. With the [EASY] and
[REPLAY], there were no significant difference between the “shifters”
and “fitters” groups. With [LEARNING], several areas were more
activated in the “shifters” than in the “fitters” group (q(FDR)=0.05;
t76=3.43; p pUNCORRECTEDb0.0013): the right hippocampus (BA 48),
SMA, left temporal cortex (BA 38), left M1, left posterior cingulate
gyrus (BA 31), left putamen, left inferior parietal lobule (BA 40), left
premotor cortex (BA 6), left anterior prefrontal cortex (BA 10), left
parietal cortex (BA 5), right thalamus (Table 4). By contrast, no area
was more activated in the “fitters” than in “shifters” group. When
comparing the “shifters” and “fitters” groups, the same regions were
the LI during each learning block; red line: “shifters” group, blue line: “fitters” group.
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Fig. 3. Whole group activation: BOLD activation for the 20 subjects contrasting the three basic contrasts ([LEARNING], [REPLAY], [EASY]), and the [LEARNING+EASY)−REPLAY]
contrast, (q(FDR)=0.05 at a t19=3.71, pb0.0015).
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found using either [LEARNING−REPLAY] or [LEARNING], and using
either [EASY−REPLAY] or [EASY]. This is consistent with the
observation that there was no significant difference between the two
groups for [REPLAY].

Sub-group analyses
In order to detail the activation patterns in the “shifters” and “fitters”

groups, separate subgroup analyses were computed with the following
contrasts focusing on activation related to motor skill learning:
[LEARNING−REPLAY] and [LEARNING−(REPLAY+EASY)] (Table 5).

In the “shifters” group, the random effect analysis (df=10) showed
four areas significantly activated with [LEARNING−REPLAY] (t10=6.7,
qFDR (0.05), pUNCORRECTEDb0.0001): the right M1, SMA,, and two areas in
the left anterior cerebellar hemisphere (lobule V–VI and VII). The
correlation between the PI and the beta weights of these four regions
of interest (ROIs) was statistically significant exclusively in the SMA
(r=0.63, pb0.0377) (Supplementary Table 2). Individual correlations
between the PI and the beta weights were computed, using four ROIs
of 50 mm³ (Fox et al., 2009) defined individually for each subject.
Individual beta weights were extracted from these ROIs and were
correlated with the 12 PI values of each subject. The strongest
Table 3
Whole group comparison.

Brain area/structure Brodmann Area (BA) Mean x Mean y Mean z mm³

R M1 BA 4 31 −27 55 1437
R thalamus 13 −19 6 203
L cerebellar hemisphere
(lobule V–VI)

−16 −49 −18 2972

SMA proper BA 6 1 −90 48 117

Contrast [(LEARNING+EASY)−REPLAY]; [q(FDR)b0,05; t19=5.93; pUNCORRECTEDb0.00001;
threshold=100 voxels]. M1: primary motor area, SMA: supplementary motor area, R:
Right, L: Left.
correlationwas observed in the SMA (r=0.33, pb0.0001); a significant
but weaker correlation was found in the left anterior cerebellar
hemisphere (lobule V–VI) (r=0.22, pb0.0113). There was no
significant correlation in the right M1 (r=0.1; p=0.36) and lobule
VII of the left cerebellar hemisphere (r=0.1, p=0.36). With
[LEARNING−(REPLAY+EASY)], the “shifters” conserved significant
activation in two areas (t10=6.7, qFDR (0.05) pUNCORRECTEDb0, 0001):
the SMA and left cerebellar hemisphere (lobule V–VI).

In the “fitters” group, the random effect analysis (df=8) showed
only one area significantly activated with [LEARNING−REPLAY]
(t8=6.7, qFDR (0.05) pUNCORRECTEDb0.0002): the left anterior cerebellar
hemisphere (lobule V–VI), where the correlation analysis suggested a
non-significant trend (r=0.53, p=0.13) between the evolution of
the PI and the beta weights. Individual correlations were also not
significant (r=0.11, p=0.26). With [LEARNING-(REPLAY+EASY)],
the activation in the left cerebellar hemisphere (lobule V–VI) was
found exclusively at a t8=4.00 (pUNCORRECTEDb0.004).

In order to demonstrate that the performance improvement
observed in healthy volunteers training to the “circuit game” with
their left non-dominant hand relies on motor skill learning and
implies the retention of the motor skill, an additional experiment
was performed. Eighteen subjects trained during 12 min on the
“circuit game” with their non-dominant left hand in front of a
computer screen, alternating 12 blocks of learning (30 s) and rest
(30 s), matching perfectly the fMRI paradigm. A retention test was
performed the next day (5 learning blocks of 30 s alternating with
rest blocks of 30 s). Thirteen subjects qualified as “shifters” (LI: +54%
by the end of the learning session), and 5 as “fitters” (LI: +24%).
Compared to baseline, the performance improvement at the retention
test on the next day was 44% for “shifters” (pb0.0005) and 24% for
“fitters” (p=0.0062) (Supplementary Fig. 1). Moreover, the slope of
the LI evolution across the five retention blocks performed on the
next day was steepest for the “shifters” (7.9) than for the “fitters”
(2.6) (p=0.0311).
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Fig. 4. Temporal evolution of the beta weights (whole group analysis). [LEARNING−REPLAY] contrast showed four ROIs (Region of Interest): SMA (BA 6), R thalamus, left M1 (BA 4) and
left anterior cerebellar hemisphere (lobule V–VI); (q(FDR)=0.05; t19=4.49; pb0.0002; threshold=100 voxels). Each chart plots the evolution of the betaweights (Mean±SEM) across
the learningblocks for the “shifters” (red) and “fitters” (blue) groups. Thedifference in betaweights evolutionwas significantly different between the “shifters” and “fitters” groups only in
the SMA (p=0.02).

Table 4
Whole brain ANOVA.

Brain area/structure Brodmann Area
(BA)

Mean x Mean y Mean z mm³

L inferior parietal lobule BA 40 −45 −34 −43 329
L anterior prefrontal cortex BA 10 5 −62 5 517
L putamen −30 −1 9 432
L dPMC BA 6 −42 −9 23 146
R thalamus 23 −13 12 669
R hippocampus BA 48 33 −34 2 318
L parietal cortex BA 5 −18 −62 45 601
L temporal cortex BA 38 −30 3 −28 406
L M1 BA 4 −34 −23 53 144
SMA proper BA 6 −2 −17 52 124
L posterior cingulate gyrus BA 31 −25 −27 41 115

[LEARNING] “shifters” > “fitters”; (q(FDR)b0,05; t76=3.62; pUNCORRECTEDb0,0005;
threshold=100 voxels). M1: primary motor area, SMA: supplementary motor area,
PMC: lateral dorsal premotor cortex, R: Right, L: Left.
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Discussion

Despite the fact that normal subjects received identical instructions
and were studied under identical experimental conditions, they
spontaneously exhibited different behavioural patterns of on-line
performance improvement during the early stage of motor skill learning
(shift/fit/lack of learning). Comparison of fMRI data between the group
of “shifters” and “fitters” revealed that differential brain activation
underlies these behavioural patterns. The SMA proper was the key area
underlying the achievement of on-line shift of the speed/accuracy
trade-off during early motor skill learning.

Which neural processes do reflect the fMRI changes acquired
while the volunteers trained to perform the “circuit game”? On the
one hand, these fMRI changes may simply reflect short-term changes
related to on-line motor skill performance improvement. Short-term
performances changes and/or transient improvements may be
observed during a single training session involving a use-dependent

image of Fig.�4


Table 5
Subgroup analysis.

Brain area/structure Brodmann
Area (BA)

Mean
x

Mean
y

Mean
z

mm³

A) [LEARNING−REPLAY]
Shifters R M1 BA 4 34 −29 64 47

SMA BA 6 1 −19 49 126
L cerebellar hemisphere
(Lobule V–Vi)

−21 −47 −21 94

L cerebellar hemisphere
(Lobule VII)

−9 −55 −15 57

Fitters L cerebellar hemisphere
(Lobule V–Vi)

−20 −45 −20 161

B) [LEARNING−(REPLAY+EASY)]
Shifters SMA BA 6 1 −19 49 70

L cerebellar hemisphere
(Lobule V–Vi)

−21 −45 −21 73

Fitters⁎ L cerebellar hemisphere
(Lobule V–Vi)

−20 −45 −20 92

qFDR 0.05 (t10 AND 8=6.7; threshold: 40 voxels) M1: primary motor area, SMA:
supplementary motor area, R: Right, L: Left
*t8=4.0; puncorrectedb0,004.
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plasticity task such as performing a simple ballistic movement in a
specific direction (Classen et al., 1998). This basic form of motor
memory mainly involves M1 (Muellbacher et al., 2002) and may
serve as a primer for more elaborated forms of motor learning,
which mobilise a broader network of cortical areas and subcortical
structures (Baraduc et al., 2004; Floyer-Lea and Matthews, 2005;
Ghilardi et al., 2000). Such an interpretation would by definition
imply that the performance improvements gained during training
should not be retained in memory as a motor skill, i.e. that no
performance gain should remain after a short washout period. The
observed fMRI changes would thus simply reflect an on-line modulation
of the network underlying transient performance improvement.

On the other hand, the fMRI changes acquired during the training to
perform the “circuit game” may reflect the early stage of motor skill
learning. Previous experiments have demonstrated early neuro-
physiological modifications underlying the first stages of motor skill
learning evaluated over a single session of training (Albert et al., 2009;
Floyer-Lea and Matthews, 2005; Orban et al., 2011; Tomassini et al.,
2011; Toni et al., 1998; van Mier et al., 1998). Indeed, motor skill
learning involves at least two stages developing on different timescales:
a fast on-line learning process leading to large performance improve-
ment over a single training session (as those observed in the current
study), and a slower process involving smaller performance gains
obtained through repeated training sessions (Dayan and Cohen,
2011). Training to perform the “circuit game” as quickly and accurately
as possible not only induces on-line performance improvements,
especially in “shifters”, but also results in motor skill learning as
demonstrated by the retention of the motor skill on the next day in
the additional experiment, both for the “shifters” and the “fitters”.
Thus, the on-line performance improvements and the related fMRI
changes observed during the training blocks reflect the early stage of
motor skill learning as demonstrated by the retention of the motor
skill on the next day in the additional experiment.

From a behavioural point of view, the shift pattern is superior to
the fit pattern since shifting early the equilibrium point of the
speed/accuracy trade-off allows reaching on-line a superior level of
skill. By the end of the learning session, the fit pattern resulted in a
smaller improvement of global performance since it did not modify
rapidly the equilibrium point of the speed/accuracy trade-off
(Fig. 2). This was confirmed by the differential evolution of the NJ,
which reflects the smoothness of movement, with an improvement
in the “shifters” and deterioration in the “fitters”. Interestingly,
when comparing how much of the skill has been retained on the
next day in the additional experiment, the difference was less
important between the “shifters” and the “fitters” than at the end of
the learning session. This could reflect either the maintenance of the
skill or the development of slight off-line learning in the “fitters” group,
or some overnight degradation in the “shifters” group. Nevertheless,
both the “shifters” and the “fitters” achieved motor skill learning since
the test on the next day (from the first block onwards) unambiguously
demonstrated retention of the performance improvement gained on the
previous day during training. Even if some overnight degradation
occurred in the “shifters”, they retained most of the motor skill they
learned the day before. It is also noteworthy that, even during the very
short retention session (five blocks of the “circuit game”), the “shifters”
maintained again a faster rate of motor skill learning, confirming that
their “learning strategy”was different from that of the “fitters”.

Neither the “shifters” nor the “fitters”were aware of having adopted
a particular behavioural strategy, as much as we could determine
during informal debriefing. Rather, it seems that the “shifters” were
more efficient from the early phase of motor learning. The stronger
fMRI activation in several areas of the “shifters” compared to the
“fitters” group was present since the first blocks of training. The reason
for these differential patterns in normal subjects during the early phase
of motor learning is unclear but one could reasonably speculate that,
after a longer training period or over several sessions, the “fitters”
would also have achieved a shift pattern.

At the whole-group level (n=20), the activation patterns
corresponded to those expected for each condition: predominantly
visual and oculomotor activity for REPLAY (Ohlendorf et al., 2010),
predominantly motors execution and control areas for EASY (Nair et
al., 2003), and motor skill learning network for LEARNING (Doyon
et al., 2003; Grafton et al., 1992; Jenkins et al., 1994). The ANOVA
demonstrated a lack of significant difference between the shift and
fit patterns for EASY (lower-level motor execution and control
components) and REPLAY (oculomotor and visual components),
strengthening the suggestion that the BOLD activation differences in
LEARNING specifically reflect motor skill learning components in
addition to “simple” motor control, oculomotor and visual processing
components. In LEARNING, several areas were more activated in the
“shifters” than in the “fitters” groups (see Table 3). Among these
areas, the SMA (BA 6), M1 (BA 4), cingulate gyrus (BA 31), putamen,
inferior parietal lobule (BA 40), premotor cortex (BA 6), anterior
prefrontal cortex (BA 10), parietal cortex (BA 5), and right thalamus
are known to be involved in motor skill learning (Grafton et al.,
1992; Jenkins et al., 1994; Doyon et al., 2003). Interestingly, a
differential activation was also observed in the right hippocampus.
Traditionally, the hippocampus has been associated with episodic
memory formation but not with motor learning, as initially suggested
by a lack of deleterious effect of hippocampus lesion on motor skill
learning (Corkin, 2002; Spiers et al., 2001). However, a recent fMRI
study demonstrated that the hippocampus may indeed play a role
in the earlier and later stages of implicit motor sequence learning
(Gheysen et al., 2010). Our observations are consistent with such a
conclusion, at least when successful learning of a visuomotor skill is
involved. Similarly, the temporal cortex (BA 38) has been more
classically associated with semantic memory (Clark et al., 2010) but
activation has also been observed in the temporal cortex during first
stage of bimanual motor skill learning (Ronsse et al., 2011), as well as
during motor skill learning with the non-dominant hand (Grafton et
al., 2002), suggesting an involvement of the temporal cortex during
the first minutes of skill learning; which is consistent with the current
observation.

There was no difference between the two groups in the M1
contralateral to the trained hand which is considered as a key area
in motor skill learning (Boggio et al., 2006; Karni et al., 1995; Kim et
al., 2004; Muellbacher et al., 2002; Tecchio et al., 2010). Recent
studies suggested that M1 may be specifically involved in the storage
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of the “low-level” executive motor learning components of a task
rather than in the higher-order aspects of motor learning (Baraduc
et al., 2004; Kantak et al., 2010; Robertson, 2009). Therefore, this
lack of differential activation in the contralateral M1 suggests that
the motor execution, motor control, and lower aspects of motor
learning did not significantly differ between the “shifters” and
“fitters” groups. A stronger activation in the “shifters” than in the
“fitters” groups in the ipsilateral (left) M1 may suggest that the
ipsilateral M1 is also involved in complex motor skill learning.
Alternatively, this may also relate to the proposal that in right-
handed subjects the left dominant hemisphere may be more involved
in higher-order aspects of motor control than the right hemisphere,
and could play a key role in motor learning whatever the hand
involved (Goldenberg, 2003; Schambra et al., 2011). Thus, whereas
lower aspects of motor control and motor learning were similar in
terms of recruited neuronal resources between the “shifters” and
“fitters”, as suggested by a lack of differential activation in the
contralateral M1, the shift pattern of motor skill learning was associated
with extra fMRI activation in the ipsilateral M1.

In a similar way, there was no statistically significant difference
in the areas related to attentional and motivational processes such
as the DLPFC or anterior cingulate cortex (Clark et al., 2010; Smith
and Jonides, 1999) between the “shifters” and “fitters” groups. This
may suggest that, at least for this task and under these particular
experimental conditions, there was no difference in motivational
and attentional processes detectable by the current fMRI design
that could explain why about half of the normal subjects adopted a
shift pattern, and half, a fit pattern. It is noteworthy that three
subjects were excluded from further analysis since their global
performance indexes remained stable (one subject) or even
deteriorated (two subjects). It is unlikely that these three normal
subjects were unable to learn since they did not suffer from neuro-
logical nor psychiatric disorder. Their demographical characteristics
did not differ from those of the “shifters” and “fitters”; and visual
comparison of their individual fMRI activation pattern did not differ
from those of the “shifters” and “fitters”. We can therefore not
speculate further about the reasons or neural substrates underlying
these behavioural patterns. It is however likely that they lacked
motivation and/or attention, or experienced fatigue during the
experiment. This may fit with recent observations about the
importance of context, motivation, and reward for motor learning
(Abe et al., 2011).

No cortical area or subcortical brain structure was significantly
more activated in the “fitters” than in the “shifters” group. This
suggests that the fit pattern was characterised by a globally less
intense activation, and that no area outside the network described
in the “shifters” group was specifically involved in the “fitters”
group. It should also be mentioned that the perception of “error”
(i.e. not keeping the pointer perfectly in the middle of the track) is
difficult for the subjects unless they make a broad error such as
clear overshoot outside of the track. Moreover, such an error would
likely lead to a transient error signal in the brain, since our “circuit
game” requires performing continuous movements. In that sense, it
is therefore not surprising that “errors” in the “circuit game” do not
lead to dedicated brain activations such as in tasks requiring
(sequential) key presses or pointing to a small target with a single
movement. Thus, either the “fitters” failed to activate efficiently the
key areas involved in the first stage of successful motor skill learning
(see below) or this lack of an early activation resulted in a less
efficient motor skill learning.

Two areas were of particular importance for achieving early
successful motor skill learning of this task: the left cerebellar
hemisphere and the SMA. In the “shifters” group, the BOLD signal
was significantly correlated with the evolution of the PI in the left
anterior cerebellar hemisphere (lobule V–VI). In the “fitters” group,
this cerebellar zone was the only one disclosed when focusing on
motor skill learning, but the correlation with the PI was not
significant. Thus, the cerebellar hemisphere is involved in successful
motor skill learning as suggested previously (Debas et al., 2010;
Ghilardi et al., 2000; Halsband and Lange, 2006; van Mier et al.,
1998). It is worth noting that neither the whole-brain ANOVA nor the
ROI analysis demonstrated a differential activation in the left anterior
cerebellar hemisphere between the two groups (Fig. 3, Table 3) in
which the same cerebellar zone (lobule V–VI) was activated in the
two motor learning patterns (Table 5). In lobule V–VI, there was a
non-significant trend for a negative correlation between the beta
values and the NJ in the two groups; i.e. the stronger the BOLD
activation, the smoother the movements. Thus, the lobule V–VI of
the ipsilateral left cerebellar hemisphere was particularly important
for performing smooth movements, independently of the learning
pattern.

All the analyses (whole group, ANOVA, and subgroup analyses)
showed that the SMA was the key area for distinguishing the two
patterns of performance improvement during early motor skill
learning (shift versus fit). In the “shifters” group, the temporal
evolution of the BOLD signal in the SMA showed the strongest
correlation with the temporal evolution of the PI. The SMA is known
to be involved in sequence learning such as learning to trace a circuit,
the serial reaction time task (SRTT), or finger tapping synchronisation
(Lee, 2004; Lewis et al., 2004; VanMier et al., 2004). In the current
experiment, the subjects had basically to learn to perform and to
optimise (through a speed/accuracy trade-off) a complex sequence of
precisely timed movements. In that sense, a higher level of activation
in the SMA in the “shifters” is coherent with an early and efficient
recruitment of the SMA allowing a better temporal implementation of
a sequence of complex movements.

In the present study, the BOLD activity was restricted to the SMA
proper, located caudally to the anterior vertical commissure (Kim et
al., 2010; Nachev et al., 2008; Picard and Strick, 2001). From a
cytoarchitectural and functional point of view, the SMA is separated
in two distinct regions: the SMA proper (caudal part) and the pre-
SMA (rostral part) (Kim et al., 2010; Nachev et al., 2008; Picard and
Strick, 2001). It has been suggested that the SMA proper is involved
in implicit motor skill learning and the pre-SMA in explicit motor
skill learning (Ashe et al., 2006). The lack of activation in the pre-
SMA in the current experiment fits with this observation since the
skill to be acquired is implicit by nature. However, the functions of
the SMA might be more complex than previously thought (Nachev
et al., 2008). It has been suggested that the SMA proper is only
involved when the correct sequence is already acquired, and permits
to improve the performance of a known sequence; whereas the pre-
SMA may to be involved during the very first moments when
acquiring new sequences (Hatakenaka et al., 2007; Nachev et al.,
2008; Nudo, 2009). Due to the nature of our task (“circuit game”), the
subjects were immediately aware of the full sequence since the circuit
determines the movements to be performed. In that sense, the
sequence is “known” at once and the activation of the pre-SMA might
be very transient. Thus, in the “shifters” group, the rapid activation of
the SMA proper and its continuous rise correlating with PI suggest
that the SMA proper is the key area leading to the an early and efficient
learning of this motor skill, as suggested previously (Grafton et al.,
1992; Toni et al., 1998).

Another hypothesis for explaining the predominant role of the
SMA proper may be the involvement of the SMA proper in inter-
manual transfer of motor skills (Frings et al., 2006; Perez et al.,
2007, 2008; van Mier and Petersen, 2006). In the current experience,
all the subjects were familiar with computer work; they daily
manipulated a computer mouse with their dominant hand. Although
we did not specifically tested inter-manual transfer, one can
hypothesise that the “shifters” were more efficient than the “fitters”
in transferring from their dominant towards their non-dominant
hand some low-level “general” (i.e. not task-specific) aptitude to
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navigate the mouse (inter-manual transfer), and to improve their
performance with the non-dominant hand.

Conclusion

Despite identical instructions and experimental conditions, normal
subjects may spontaneously adopt different behavioural patterns
(shift/fit) during the first minutes of motor skill learning, which
correlate with differential brain activation patterns. On the one hand,
the ipsilateral cerebellar hemisphere is involved in the control of
movement smoothness independently of the behavioural pattern
(shift/fit). On the other hand, the SMA proper is the key area associated
with an early shift of speed/accuracy trade-off, i.e. the most efficient
motor skill learning pattern. This confirms a critical role of the SMA
proper in the early stage of motor skill learning, at least when the task
requires the performance of a sequence of fast and accuratemovements
under visual control.

Supplementary data related to this article can be found online at
http://dx.doi.org/10.1016/j.neuroimage.2012.04.052.
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