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We introduce a new framework for detecting mental workload changes using video frames obtained
from a low-cost webcam. Image processing in addition to a continuous wavelet transform filtering
method were developed and applied to remove major artifacts and trends on raw webcam photo-
plethysmographic signals. The measurements are performed on human faces. To induce stress, we have
employed a computerized and interactive Stroop color word test on a set composed by twelve
participants. The electrodermal activity of the participants was recorded and compared to the mental
workload curve assessed by merging two parameters derived from the pulse rate variability and
photoplethysmographic amplitude fluctuations, which reflect peripheral vasoconstriction changes.
The results exhibit strong correlation between the two measurement techniques. This study offers
further support for the applicability of mental workload detection by remote and low-cost means,
providing an alternative to conventional contact techniques.
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1. Introduction

Stress has repeatedly been associated with an increased risk for
cardiovascular disease by primarily impacting blood pressure [1].
Depression, for example, corresponds to a risk factor for coronary
heart disease [2]. Stress also impairs working memory and general
cognitive function [3,4]. The association between affective states
and computers has been popularized by Picard [4] who herein
created the affective computing scientific domain. In these kinds of
human-machine interactions, the computer is able to quantify
affective states, stress and emotions [5] by using behavioral
information and physiological parameters of the subject. Herein,
stress detection and particularly mental workload changes are
used to regulate the user-interface or the virtual environment to
facilitate interactions [6].

Quantifying stress by its physiological signature is a field of
research that presents a particular and increasing interest, where
physiological parameters like Heart Rate (HR) and Heart Rate
Variability (HRV) are reliable inputs to quantify different forms
of stress [7-10]. However, contact sensors can be limited in some
scopes of application where a specialist must install and monitor
them [11]. In psychophysiological experiments, contact sensors
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may generate a bias by interfering with the user, resulting
practically by an erroneous estimation [12].

The HRV is a parameter used in affective computing and
psychophysiology to give an index of the Autonomic Nervous
System (ANS) activity in order to detect workload changes in
real time [7]. Its spectral analysis can provide the sympathovagal
balance, a ratio that reflects reciprocal changes of sympathetic and
vagal outflows [13]. The HRV tends to be rhythmic and ordered in
relaxed and calm states and follows the respiration by a phenom-
enon called Respiratory Sinus Arrhythmia. In contrast, the HRV
tends to be chaotic and disordered in states of anger, anxiety or
when enduring stress. These rhythmic variations provide a state
known as cardiac coherence [14], where the HRV regularity can
be quantified using entropy-based algorithms [15]. Assessment
of physiological signals by remote technologies is particularly
advantageous in applications that need to understand feelings
and sentiments of a patient.

Non-contact measurements of physiological parameters can be
achieved using thermal infrared imaging, a technology employed
by Pavlidis et al. to collect physiological data on human faces [12].
Similarly, Doppler radars are non-contact sensors that were used
to detect heartbeats [16] and respiration signals [17]. More
recently, digital cameras and webcams were employed on the
face to detect the blood volume pulse [18-21] and compute heart
rate and breathing rate. The principle, based on PhotoPlethysmo-
Graphy (PPG) consists in observing light variations on the skin to
recover the cardiovascular pulse wave. The main drawback of this
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Fig. 1. Protocol of the experiment, composed by three stress sessions and three
relax sessions.

technique is that PPG signals are susceptible to motion-induced
artifacts [22], particularly when dealing with webcams and ambi-
ent light. Standards of measurement recommend the use of ECG
sensors to measure HRV [23]. However, it has been shown that
Pulse Rate Variability (PRV) derived from PPG signals can be a
good surrogate of HRV computed using ECG [24-26]. Sun et al.
have compared performances between a low-cost webcam and a
high-sensitivity camera to assess HR and PRV. They conclude that
the functional characteristics of a 30 fps webcam are comparable
to those of a 200 fps camera when interpolating signals to improve
the time domain resolution [19]. Here, a low-cost webcam can be a
good surrogate to conventional contact sensors when assessing
the cardiovascular pulse wave. This particular signal can be used to
evaluate the ANS by observing changes in the period of the peaks
and by observing fluctuations in the amplitudes or in the baseline
of the signal [27-29].

We have recently developed a robust method to extract the PRV
signal using the u* channel of the CIE L*u*v* color space combined to a
skin detection, an essential step that improves signal to noise ratio
[20]. Then, we have employed this method to quantify mental work-
load changes using PRV-derived parameters [21]. In this paper, we
extend this methodology by proposing a new filtering technique that
was developed to remotely and robustly recover the instantaneous HR
signal concurrently to photoplethysmographic amplitudes fluctuations
from video frames acquired by a low-cost webcam. Orchestrated by
the ANS, a peripheral vasoconstriction appears under stressful situa-
tions and leads PPG amplitudes to decrease [27]. We have employed
these parameters to form a curve that represents mental workload
changes for each of the 12 participants that were performing a
computerized and interactive version of the Stroop color test.

The main contributions of this article are: (1) to provide a
filtering technique based on the continuous wavelet transform of
the raw PPG signal to automatically track HR variations on time
using an adaptive window, and (2) to estimate mental workload
changes of a participant by computing a set of basic parameters
extracted from the instantaneous heart rate and the PPG ampli-
tude fluctuations.

Firstly, we describe the approach, where a continuous wavelet
transform filtering method was developed to precisely recover
cardiac parameters of all participants. Secondly, we specify the
protocol and the modalities used to induce stress during the
experiments. Then, we detail how we have computed the parameters
extracted from the HR series to form the mental workload curves.

2. Methods
2.1. Experimental procedure

Twelve students (two females and ten males, 22-27 years) from
the laboratory participated in this study. All participants gave their

informed consent before the beginning of a session. Each experi-
ment lasted five to six minutes. The computer work task has already
been applied in various studies and is based on an interactive
version of the Stroop color word test [8]. Briefly, the participant
has 3 s to click on the colored box that corresponds to the word
printed in the center of the monitor (Fig. 2). Some words are printed
in a color not denoted by the name (incongruent, e.g., the word
“green” printed in a blue ink) while the others are printed in the
right color (congruent, e.g., the word “pink” written in pink).

The participants performed three sessions (see Fig. 1) of the
color word test, i.e. a one minute training session (TS) to familiar-
ize the user with the virtual interface and two stress sessions (SS).
Each session are separated by a one minute relaxation session (RS).
In the first SS, the participant has one minute to click on 35 correct
boxes. A wrong click decrements the value by one and a loudly
error sound is played. A horizontal progress bar is added under the
central word, giving the remaining time of the session. Addition-
ally, a vertical progress bar is added to the right of the word,
indicating the remaining time to click. The second SS last one
minute and is identical to the first SS, except that the positions of
all color boxes are randomized on each click. This time, the user
must click on 40 correct boxes. A stressful music is played during
both SS and an alarm siren is launched the 10 last seconds.

At the end of the session, the participants were asked to report
their subjective experiences of stress via a 5-point Likert scale
(1=not at all, 5=extremely). The following parameters were used:
stressed, tensed, exhausted, concentrated and stimulated [30].
They gave two sets of five responses: one set for the two stress
sessions and one set for the three relaxation sessions. This rating
technique is used to control the correlation between physiological
responses and perceived exertion. Finally, a last question was
asked to appreciate the effects of the randomized process on
participants between the first and the second SS. The electro-
dermal activity was concurrently recorded using a skin conduc-
tance sensor.

2.2. Materials

A low-cost HD webcam (Lifecam Cinema by Microsoft) was
used in these experiments. The resolution of the device is reduced
to 320 x 240 pixels in order to keep an acquisition frequency of
30 fps. The maximum webcam resolution is 1280 x 800 pixels. The
three RGB channels are encoded with 8 bits per pixel. It is
important to note that auto white balance is disabled in these
experiments. White balance locally regulates colors and generates
non-desired artifacts in webcam PPG signals. A finger skin con-
ductance sensor (SC-Flex/Pro by Thought Technologies Ltd.) was
used to measure the electrodermal activity at a sampling fre-
quency of 256 Hz. PPG signals [see Fig. 3(e)] were recorded with a
C+ + based software and analyzed offline with MATLAB (The
MathWorks, Inc.).

2.3. Preprocessing operations

The overall system is composed with both image and signal
processing [20]. Briefly, the raw PPG signal x(t) is obtained using a
spatial averaging operation [Fig. 3(e)] on the merged frame [Fig. 3
(d)] computed using the skin detection mask [Fig. 3(b)] and the u*
component frame of the CIE L*u*v* color space [Fig. 3(c)]. It has
been shown that using such a component improves the robustness
of the system in presence of noise induced by motion or light
artifacts [20]. The skin detection mask was developed to collect
only PPG pixels that contain the pulse wave signal. The filter is
established in the YCbCr color space by setting an empiric thresh-
old on the 3 channels [20]. A set of t frames gives a raw signal of t
points [Fig. 3(e)].
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Fig. 2. Screenshots of the interactive application: during the Stroop color word test (left picture) and the first relaxation video (right picture) that starts right after the

training session.
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Fig. 3. Processing algorithm overview [20]. (a) Pan, Tilt and zoom parameters are
computed to zoom and track the face on the input frame. (b) Pixels that contain
PPG information are isolated by a skin detection. (c) The RGB color space is
converted to the CIE L*u*v* color space. (d) The u* frame is merged with the skin
detection mask by a combinational AND operation. (e) A spatial averaging step is
performed to transform a set of frames into a single raw signal. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

2.4. Continuous wavelet transform filtering to assess the cardiac
pulse wave

The DC component is primarily removed to reveal detailed
information [31] on lower scales prior to performing the Contin-
uous Wavelet Transform (CWT):

Xac(t) =x(t)—pu (1)

where u is the mean of the raw PPG signal x(t) [Fig. 3(e)]. The
webcam acquisition generates irregularly time-sampled signals. To
avoid these irregularities, the normalized signal x4A(t) is resampled
using a 30 Hz cubic spline function. A CWT filter was developed to
remove trends and high frequency noise of the raw signal in the
[0.6-4 Hz] frequency band using the Morlet wavelet. This wavelet
has already been used as a mother wavelet to analyze biomedical
signals and particularly blood flow signals [32] and was employed
in this study. A typical example is presented in the scalogram from

Scale of colors (min to max) of the wavelet coefficients
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Fig. 4. The continuous wavelet transform of the PPG signal is computed between
0.6 and 4 Hz, corresponding respectively to scales 37 and 7 in the present
scalogram. This particular plot represents the absolute value of each wavelet
coefficient. The pulse wave oscillations are distinctly identifiable around the scale
20, corresponding to 1.22 Hz in the frequency domain. A 30 s moving window,
represented in dashed green lines, runs through the signal by a constant 3 seconds
step. This figure is an extract from the signals of subject #12. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4, where high scales correlate better with low frequencies and
low scales with high frequencies of the signal by respectively
stretching or compressing the wavelet. A mask is then computed
from the wavelet coefficients to attenuate effects generated by
high frequency noise or low frequency trends. An iterative algo-
rithm is adopted and uses the wavelet coefficients included in a
30 s moving window (see Fig. 4) that runs through the entire CWT
with a constant 3 s step. For each of these regions of interest, the
global energy is computed using the following formula:

E=3|CWT(xs0)"| @)

where CWT(xac) is the continuous wavelet transform of the
resampled PPG signal in the region of interest. The summation is
computed for each scale on the CWT and gives a scalar by scale,
forming the global energy plot (see Fig. 5). We select the point that
presents the maximum amplitude in the energy axis, and use the
corresponding scale for further processing.

Based on the reference point location, we construct a trape-
zoidal weighting window (Fig. 6) for each scale using the following
formulas:

1 if RP; < sc < RPy
Rgi’:—:é;[{-l—] if RPy < sc < RPyy (3)
Rff;_—’fggu+l if RP,<sc<RPy
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Fig. 5. A typical example representing the global energy plot of a CWT region of
interest. The reference point, displayed with a red star in the figure, corresponds to
the scale that presents the maximum energy. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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sc corresponds to the scales. If we take into account the example
presented before, sc scans all scales from 7 to 37 (corresponding to
0.6-4 Hz, see Fig. 4). RP;, RP;;, RPy and RPyy are a set of limits that
are empirically determined using the reference point (RP in Eq. 4)
location. Herein, RP; and RPy are a set of two limits where the
weighting window (Fig. 6) is set to 1. Then, a linear cut is
employed between RPy and RPyy and between RP; and RPj; to
avoid abrupt breaks at the border of the window, in order to form
a trapezoidal window instead of a rectangular window.

RP; = RP —[4 x (SCmax — SCimin)/100]

RPy; =RP —[12 X (SCmax — SCmin)/100]

RPy = RP+[4 x (SCimax —SCmin)/100]

RPyy = RP+[12 x (SCmax _SCrru'n)fl 00] “)

where scp;, is the lowest scale and sc,q the highest scale,
respectively 7 and 37 in this particular case. RP corresponds to
the reference point (see Fig. 5).

A weighting window is computed for each region of interest
(Fig. 4) and is combined, coefficient by coefficient, to the CWT of
the following region of interest by an element-wise multiplication.

At this stage, a new weighting window is constructed from the
weighted CWT [Fig. 7(b)]. This technique was developed to track
frequency fluctuations of the cardiac pulse wave signal in the scale
domain, by automatically adapting the weighting window location
over time. When all the weighting windows are computed, a
weighting matrix is generated where the windows have succes-
sively been inserted one beside the other [Fig. 8(a)].

The weighting matrix presented in [Fig. 8(a)] exhibits the trends
followed by the cardiac pulse rate of the participant. Nevertheless and
to assess precisely the pulse rate variability, we need to perform a beat
to beat analysis and assess the instantaneous pulse rate. Thus, this
weighting matrix was employed only for filtering purpose on the
entire signal. The result is presented in [Fig. 8(b)], where the CWT is
weighted using the weighted matrix from [Fig. 8(a)].

b

O AR 11 T T

Scales

20 25 30 35 40 45
Time (s)

Fig. 7. (a) The wavelet coefficients of a region of interest. (b) The representation is weighted using the weighting window computed with the previous region of interest.
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Fig. 8. All the weighting windows have been placed inside a weighting matrix (a). The pulse wave frequency changes are distinctly identifiable in this representation. The
weighting matrix is applied on the entire CWT of the PPG signal (b). The inverse transform of the resulting coefficients is performed to remove trends and high frequency

noise of the raw PPG signal.
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The inverse transform of the weighted coefficients [Fig. 8(b)] gives
a refined representation of the signal, without trends and high
frequency artifacts [Fig. 9(b)]. To precisely assess the peaks, this signal
is interpolated with a cubic spline function at a sampling frequency of
256 Hz. An existing peaks detection algorithm (findpeaks function in
MATLAB) was employed to find local maxima, assess the InterBeat
Intervals (IBI) and compute the instantaneous pulse rate (see Fig. 10).
The minimum peak separation threshold was defined and fixed
empirically. The peaks amplitudes were recorded and used to form
mental workload curves (see Section 2.5).

Residual ectopic beats are detected and removed using a threshold
condition defined empirically. Briefly, if a difference between two
consecutive IBIs higher than 40 bpm occurs, the ectopic beat is
removed and replaced by the average of the preceding and following
beats (see the typical example presented in Fig. 10).

2.5. Mental workload changes detection using the instantaneous
heart rate trace

Two parameters are derived from the previously quantified
instantaneous HR trace. In order to suppress time-sampled irregula-
rities, the signal is interpolated with a 15 Hz cubic spline function. The
HR tends to increase gradually during the stress sessions, just like in
the typical example presented in Figs. 8 and 10. To recover these
trends, a 20s two-sided moving average (5) is computed on the
interpolated HR signal (Fig. 11).
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Fig. 9. Two typical examples representing the PPG signal before (a) and (c) and
after the filtering process (b) and (d). Herein, red stars correspond to the peaks
detected by the algorithm. In the first case, we can visually observe that the HR of
the participant increases while the intensities of the PPG signal decrease. In this
recording from participant #11, the second stress session was precisely launched at
t=135s. In contrast, the HR of the subject presented in the second case is slower
and more stable and no significant fluctuations in intensities are notable here. This
particular recording was extracted from participant #4 data, where the relax
session was launched around t=180 s. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

300

250
200
150

HR (bpm)

100

50 L N
0 50 100 150 200 250 300 350 400

300 T T T T T T T
250 E

150 | E

100 WWWNWW-

50 L H L h L L L
0 50 100 150 200 250 300 350 400

Time (s)

HR (bpm)

Fig. 10. The instantaneous pulse rate trace is formed after detecting local maxima,
followed by the computation of the IBIs. Similarly to Fig. 8, the trend is distinctly
identifiable in this figure. Residual ectopic beats (a) are removed using a set of
thresholds (b). These signals are from participant #12.

With MA the two-sided moving average of the instantaneous HR
signal. y corresponds to the interpolated instantaneous HR signal (see
Fig. 10). The moving average is computed on the entire signal,
represented by the n index.

Finally and to compute the mental workload curve (see Fig. 12),
the two parameters were normalized (6) and combined (7). This
sum produces a new curve, smoothed using a 20s two-sided
moving average filter. Herein, we propose a simple yet efficient
approach which is based on observations: all these parameters
vary concurrently and the combination is only employed to
magnify their simultaneous increases and decreases.

_o=H
S=— ©)

Yworkioad = MA-+ampl (7)

With Yworkioad the resulting curve that represents mental workload
changes (Fig. 12), ampl corresponds to the PPG amplitude fluctua-
tion parameter (see Fig. 11). u and o correspond respectively to the
mean and standard deviation of the parameter to be normalized,
represented in Eq. 6 by the § variable.

3. Results

Workload signals were compared to electrodermal responses to
assess the agreement with the camera measurements. A typical
example is presented in Fig. 12 where the workload curve
generated using the PRV signal is in close agreement with the
raw electrodermal trace of the participant. The skin conductance
level, the tonic component of the electrodermal activity, was
computed using a 20 s two-sided moving average filter.

To be compared, both webcam and skin conductance level
signals were normalized between —1 and 1 (Fig. 12). Boxplots are
employed to represent the differences on mean and derivative of
both webcam and electrodermal measurements for each session
(see Figs. 13 and 14).

A statistical analysis was used to quantify the level of agree-
ment between physiological measurements by the webcam and
the contact skin conductance sensor. Results of the analysis are
presented in Table 1 and plotted on Figs. 13 and 14, where
performances between the two measurements techniques are
revealed. Results of the subjective experiences questionnaires are
reported in Table 2. Significant differences were observed on the
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Fig. 11. Two parameters are computed from the raw PPG signal to quantify mental workload changes: the trend, by a 20 s two-sided moving average on the instantaneous
pulse rate signal and the PPG amplitude fluctuation, which reflects peripheral vasoconstriction changes.
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Fig. 12. Results of the mental workload detection for the participant #11 (a) and
#12 (b). Black plots correspond to the webcam-derived workload signal and red
plots to the skin conductance level, derived from the raw electrodermal activity
signal. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

questionnaires between the relaxation and stress sessions follow-
ing the stressed, tensed, concentrated and stimulated factors. In
contrast, the exhausted factor presents no significant variation.
Also, results of the questionnaires have been reported in Table 1.
These described values are means of the most four relevant
factors. Fig. 13 represents the mean value of respectively the
webcam [Fig. 13(a)] and the skin conductance [Fig. 13(b)]

measurements during all sessions. A significant increase in the
averages between stress and relaxation sessions is observable,
independently of the measurement technique. Similarly, the
evolution of the mental workload signal, i.e. the derivative of the
responses, is quantified using the webcam [Fig. 14(a)] and skin
conductance sensor [Fig. 14(b)]. The boxplots of derivatives pre-
sent significant differences between the three RS and the two SS
while the training session is located between them.

The global measurements of all relaxation and stress sessions are
plotted in Fig. 15, for both contact and remote sensors and for the
questionnaires. Specifically, the webcam-derived median was —0.3
normalized units (n.u.) for all RS and 0.33 n.u. for the two SS [Fig. 15
(a)]. Medians of the derivative measurements present a significant
increase, —0.011 to 0.015 n.u. for relaxation and stress sessions
respectively [Fig. 15(c)]. Similar tendencies were extracted from skin
conductance level signals, where medians vary between —0.27 and
0.32 for respectively RS and SS [Fig. 15(b)]. The derivatives measure-
ments evolve from —0.009 to 0.016 between relax and stress sessions
[Fig. 15(d)]. Also, the questionnaires were averaged to only obtain a
single value per participant and per session. Medians vary between
—0.5 and 0.5 for RS and SS respectively [Fig. 15(e)].

Pearson's correlation coefficients were used to quantify the
level of agreement between physiological measurements by the
remote and contact techniques (see Table 1). The time series, i.e.
the skin conductance level and the mental workload signal
derived from the webcam (Fig. 12) are correlated, except for
participants #2 and #7. In addition, correlation coefficients for
mean and derivative measurements were computed (always
between webcam and skin conductance recordings) and tend to
follow those computed between time series.
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Fig. 13. Boxplots representing mean values for each sessions. Both webcam (a) and electrodermal (b) measurements indicate an increase on mean values during the two
stress sessions, compared to the three relaxation sessions. This plot represents data for all the twelve participants.
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Fig. 14. Boxplots representing the webcam (a) and electrodermal (b) signal evolution. Both traces are computed using derivative operations.

Table 1
Results of the statistical analysis for both stress and relaxation sessions.

# Global measurements during RS Global measurements during SS Correlation Correlation Correlation
between time  between mean between
Webcam Skin conductance SES® Webcam Skin conductance SES series measurements derivative
measure-
w 5 m S m 5 m S ments
1 —0.40 —-0.015 -0.37 -0.012 -1 0.19 0.020 0.65 0.016 0.38 0.8 0.81 0.93
2 0.05 —-0.004 -0.19 —-0.004 -05 0.20 0.012 0.30 0 0.5 <0.1 <0.1 <01
3 -0.27 —0.006 -048 -0.011 0 0.38 0.006 -0.22 0.01 0.5 0.36 0.31 0.41
4 -0.39 —0.011 0.03 —-0.013 -05 -0.30 0.019 0.23 0.023 0.5 0.62 0.5 0.95
5 0.16 —0.01 —-0.07 —0.003 0.75 0.58 0.017 0.40 0.012 1 0.17 <01 0.65
6 -0.07 —0.011 —-0.21 —-0.012 -0.88 0.40 0.017 0.33 0.007 0.25 0.52 0.37 0.90
7 —-0.20 0 0.00 —0.002 -0.63 0.64 —0.001 0.44 0.015 0.75 <0.1 <0.1 0.28
8 —0.40 —0.01 —-043 —0.006 -0.63 —0.09 0.012 -0.26 0.017 0.5 0.55 0.63 0.54
9 —-0.30 —-0.013 -033 —0.006 0.25 0.28 0.013 -0.15 0.004 0.25 0.64 0.67 0.41
10 —-0.30 —0.023 0.07 —0.006 -0.5 0.49 0.008 0.64 0.019 0.5 0.73 0.73 0.26
11 —0.58 —0.011 —-0.49 —-0.012 -0.25 —0.08 0.024 0.32 0.022 0.25 0.86 0.88 0.95
12 —-0.49 —-0.011 -0.33 -0.015 -0.38 0.51 0.019 0.42 0.019 0.38 0.88 0.94 0.88

@ u corresponds to the average of mean values during the two stress sessions or the three relaxation sessions.
b 5 corresponds to the average of derivative values during the two stress sessions or the three relaxation sessions.
€ SES: Subjective Experiences of Stress, corresponding to the average of the stressed, tensed, concentrated and stimulated factors.
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Particular discrimination plots (Fig. 16) were employed to
demonstrate that mean and derivative parameters can be used
to linearly discriminate the two classes. The derivative, plotted on
the horizontal axis, correspond to a better discriminant parameter
than the average, plotted on the vertical axis.

Table 2
Results of the Subjective Experiences of Stress.

Variable RS SS

Stressed —0.54 (0.5) 0.38 (0.38)
Tensed —0.71 (0.45) 0.29 (0.45)
Exhausted —0.88 (0.31) —0.58 (0.42)
Concentrated -0.12 (0.71) 0.79 (0.33)
Stimulated —0.04 (0.69) 0.46 (0.4)

These values represent the mean (SD) for each factor on all participants, scaled
from —1 (not at all) to 1 (extremely). RS represents the three relaxation sessions
and SS the two stress sessions.

4. Discussion

Remote measurement of the HR and PRV is a powerful tool for
monitoring and assess the mental state of a person [12]. We
choose to use an affordable technology to measure these physio-
logical parameters. The results presented in this study demon-
strate the feasibility of using the cardiac response derived from a
low-cost webcam to assess mental workload changes. The proces-
sing method presented in this study is motion-tolerant and robust
to light deficiency [20]. The instantaneous pulse rate can be
properly assessed even in presence of strong motion artifacts
(see Fig. 17). In this typical example, the participant was moving
his head at tx~315s [Fig. 17(a)]. The processing algorithms
detailed in Section 2 were efficient to compensate motion fluctua-
tions by generating a correct weighting matrix. This way, both the
PPG amplitude fluctuation and the pulse rate variability [Fig. 17(b)]
could be accurately assessed and the mental workload properly
determined.
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Fig. 15. Boxplots representing global average measurements of means in figures (a) and (b) and derivatives in figures (c) and (d) for the three relax sessions and the two
stress sessions. The mean values of the stressed, tensed, concentrated and stimulated factors of the questionnaires are presented in (e).
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Fig. 16. Plots representing averages of derivative versus averages of mean for both webcam (a) and skin conductance recordings (b). Red squares represent values during the
two stress sessions and blue circles during the three relax sessions. Each respective symbol represents a participant. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)



162 F. Bousefsaf et al. /| Computers in Biology and Medicine 53 (2014) 154-163

o
Qo
[S
=1
c
°
X
o
0 L L L L L L L L
0 50 100 150 200 250 300 350 400
200 b T T T T T T T T
€
é 150 1
o
T
100
0 50 100 150 200 250 300 350 400

Time (s)

Fig. 17. Resistance to motion: horizontal head movements are recorded (a) during
the experiment where strong fluctuations can be observed at t~315s. The
instantaneous HR trace (b) is robust to these motion artifacts and is properly
assessed. These signals are from subject #9.

A simple, yet efficient, mental workload detection is proposed
in this study where we have employed 2 parameters derived
from webcam PPG signals, i.e. the trend of the instantaneous HR,
assessed by a moving average and the amplitude fluctuation of the
PPG signal that reflects peripheral vasoconstriction changes, which
is modulated by sympathetic nervous system activity [27]. There
are certain limitations that should be pointed out when consider-
ing the combination approach. The sum we employed may not be
the best method and it is not assured that parameters extracted
from HR and PPG evolve in a linear way. A system identification
should be conducted to address this issue in future work.

Generally, a significant increase on mean and derivative values
is perceptible between relaxation and stress sessions, indepen-
dently of the measurement techniques (see Fig. 15). The derivative
and the mean can be used as parameter employed to directly
discriminate calm and stress states without using particular
machine learning algorithms (Fig. 16).

Results from Table 2 indicate that participants were effectively
stimulated by the interactive stress test we propose in this study.
Also, the significant difference between RS and SS on the stress
factor indicates that our induction protocol, based on the Stroop
test, was quite effective. The boxplot of means printed in Fig. 14
gives an estimation of the mental workload curves computed with
the webcam measurements. As for the skin conductance level,
these curves tend to decrease during relaxation sessions and, in
contrast, tend to increase during stress sessions. Our results
indicate that participants seem to be less stressed during the
training session than during stress sessions. These variations are
probably driven by the addition of stressors like sounds and timers
(see the experimental protocol presented in Section 2.1). Never-
theless, the relatively high disparity on the data (Figs. 14 and 15)
indicates that participants were more stressed during the TS and
SS than during RS, in accordance with their subjective experiences
of stress (see Table 2). Accordingly to the correlation coefficients
presented in Table 1, subjects #2 and #7 presented no correlation
between time series. This can be explained by the global trend of
the signals (see Fig. 18 for the particular case of subject #7) which
evolves in the inverse way, while local fluctuations are indeed
correlated. For subject #7, the Pearson's correlation is equal to
0.7 if we compute the operation on detrended signals.

A limitation to note is that we perform these experiments on a
set composed only by 12 participants. It is obvious that a larger
sample should permit to ascertain the clinical validity of the
method. Herein, the purpose of this study is to evaluate the
feasibility of such a method, which is relatively innovative.
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Fig. 18. Result of the mental workload detection for the participant #7. The black
dotted line corresponds to the webcam-derived workload signal and the red one to
the skin conductance level, derived from the raw electrodermal activity signal. The
Pearson's correlation between these two series was < 0.01. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Tapping errors were recorded during the stress tests and will be
analyzed in future works in order to observe their impact on the
participant mental workload. The number of recognized emotions
must be increased by integrating other modalities. Thus, analysis
of video records will be the subject of future works to propose a
multimodal emotion recognition framework. The capability to
detect stress by non-contact means is promising, particularly in
affective computing, where the stress level can be used as an input
that regulate the environment parameters.

5. Summary

Monitoring physiological signals via noncontact means pre-
sents a greater challenge in personal health care, telemedicine and
affective computing. In this study, we propose to remotely assess
mental workload changes using the amplitude fluctuation of the
photoplethysmographic signal concurrently with the pulse rate
variability. These particular signals provide an estimation of the
autonomic nervous system state and are formed using video
frames of human faces, recorded with a low-cost webcam. Robust
image and signal processing are introduced to collect only pixels
that contain photoplethysmographic information. We have used a
continuous wavelet transform filter to denoise and detrend signals
in order to detect peaks and compute interbeat intervals. In order
to validate the proposed method we have recorded, concurrently
to the webcam curves, electrodermal activity during an interactive
game that was developed to successively stress and relax the
subject. The results exhibit a strong correlation between the
trends of the webcam and contact skin conductance level traces
and offer further support for the applicability of mental workload
detection by remote and low-cost means, providing an alternative
to conventional contact techniques.
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