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F O R M A T I O N
2008 – 2011 – Thèse de doctorat en Génie Electrique et en Electronique, Electrotechnique et Auto-

matique.
• Mention : Très Honorable
• Cotutelle entre l’École Nationale d’Ingénieurs de Sfax, Tunisie et l’Université
Claude Bernard de Lyon, France

2005 – 2006 – Master Electronique
• Mention : Bien
• École Nationale d’Ingénieurs de Sfax, Université de Sfax, Tunisie

2002 – 2005 – Cycle de formation d’ingénieurs
• Spécialité : Génie Electrique
• Mention : Bien
• École Nationale d’Ingénieurs de Sfax, Université de Sfax, Tunisie

2001 – 2002 – Classes préparatoires au écoles d’Ingénieurs
• Spécialité : Physique-Chimie
• Institut Préparatoire aux Etudes d’Ingénieurs de Sfax, Université de Sfax, Tunisie

2000 – Baccalauréat
• Spécialité : Sciences Expérimentales
• Mention : Assez bien
• Lycée Technique 9 avril 1938 de Sfax, Tunisie

A C T I V I T É D E R E C H E R C H E
Depuis 2012 – Activités post-doctorales

• Développement de nouveaux algorithmes de traitement du signal de parole dans
le but d’améliorer l’intelligibilité de la parole chez les sujets porteurs d’une prothèse
cocléaire.
• Thème : Traitement du signal de parole, algorithmes de débruitage, prothèse co-
chléaire.
• Equipes de Recherche : Unité de recherche Advanced Technologies for Medicine
and Signals, École Nationale d’Ingénieurs de Sfax, Tunisie & Groupe Parole, Au-
diologie, Communication & Santé, Centre de Recherche en Neurosciences de Lyon
(CNRS UMR5292), Université Claude Bernard de Lyon, France.
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2008 – 2011 – Thèse de doctorat en cotutelle
• Titre : Algorithmes de Réduction du Bruit en Vue d’une Amélioration de l’Intelli-
gibilité de la Parole : Cas de la Prothèse Cochléaire
• Thème : Evaluation objective et subjective de différents algorithmes de réduction
du bruit (Algorithme de la soustraction spectrale bi-voie, Algorithme de la sous-
traction interspectrale), Estimation des densités spectrales de puissance des signaux
de parole bruités, Estimation des densités spectrales de puissance des bruits, Esti-
mation de la densité interspectrale des bruits, Application : Prothèse cochléaire.
• Equipes de Recherche : Unité de recherche Advanced Technologies for Medicine
and Signals, École Nationale dIngénieurs de Sfax, Tunisie & Groupe Parole, Au-
diologie, Communication & Santé, Centre de Recherche en Neurosciences de Lyon
(CNRS UMR5292), Université Claude Bernard de Lyon, France.

2008 – 2011 – Mémoire de Master
• Titre : Implémentation sur DSP TMS320C6416 d’une Stratégie de codage pour Pro-

thèse Cochléaire.
• Thème : Développement et implémentation matérielle de différentes stratégies de

codage du signal de parole basées sur les filtres numériques et la transformée de
Fourier rapide, Application : Prothèse cochléaire.

• Equipe de recherche : Laboratoire d’Electronique et des Technologies de l’Informa-
tion, École Nationale dIngénieurs de Sfax, Tunisie.

P U B L I C A T I O N S S C I E N T I F I Q U E S
MREVUES INTERNATIONALES
2012 – F. Kallel, A. B. Hamida, R. Laboissière et C. Berger-Vachon, 2013. Influence of a Shift

in Frequency Distribution and Analysis Rate on Phoneme Intelligibility in Noisy
Environment in Simulated Bilateral Cochlear Implant, Applied Acoustics, 74 : 10-17.

– F. Kallel, M. Ghorbel, M. Frikha, C. Berger-Vachon et A. B. Hamida, 2012. A
noise cross psd estimator based on improved minimum statistics method for two-
microphone speech enhancement dedicated to a bilateral cochlear implant. Applied
Acoustics, 73 :256-264.

– F. Kallel, M. Frikha, M. Ghorbel, A. B. Hamida et C. Berger-Vachon, 2012. Dual-
channel spectral subtraction algorithms based speech enhancement dedicated to a
bilateral cochlear implant. Applied Acoustics, 73 :12-20.

– A. Derbel, M. Ghorbel, F. Kallel, A. B. Hamida et M. Samet, 2012. Exploring Wavelet
Transform Based Methodology for Cochlear Prosthesis Advanced Speech Processing
Strategy, soumis au journal Acta Acoustica.

2008 – A. Derbel, F. Kallel, M. Samet et A. B. Hamida, 2008. Bionic wavelet transform based
on speech processing dedicated to a fully programmable stimulation strategy for
cochlear prostheses. Asian Journal of Scientific Research, 1 :293-309.

MConférences Internationales
2010 – F. Kallel, A. Jeanvoine, A. B. Hamida et C. Berger-Vachon, 2010. Etude de l’effet du

mode de stimulation sur l’intelligibilité de la parole en milieu silencieux et en milieu
bruité. Handicap 2010, Porte des Versailles, Paris-France, Juin 2010.
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2009 – F. Kallel, D. Daoud, M. Ghorbel, et A. B. Hamida, 2009. Comparaison des différents
algorithmes de débruitage du signal de parole pour les aides auditives binaurales.
5th International Conference : Sciences of Electronic, Technologies of Information and Tele-
communications, Hammamet-Tunisie, March 2009.

– D. Daoud, F. Kallel, M. Ghorbel, et A. B. Hamida, 2009. Spatial filtering based speech
enhancement for binaural hearing aid. 6th International Multi-Conference on Systems,
Signals and Devices, Djerba-Tunisie, March 2009.

2007 – A. Derbel, F. Kallel, A. B. Hamida et N. Ellouze, 2007. Wavelet-Based Parameteri-
sation of Speech Signal Dedicated to Cochlear Prosthesis", 5th International Multi-
Conference on Systems, Signals and Devices, Hmmamet-Tunisie, March 2007.

– A. Derbel, F. Kallel, A.B. Hamida, 2007. Wavelet Filtering Based on Mellin Transform
Dedicated to Cochlear Prostheses. 29th IEEE International Conference on Engineering in
Medicine and Biology Society, Lyon-France, Octobre 2007.

MConférences Nationales
2007 – F. Kallel, A. B. Hamida, 2007. Implémentation sur DSP d’une Stratégie de Stimula-

tion Flexible pour Prothèse Cochléaire Basée sur un Banc de Filtres. Septièmes Journées
Scientifique en Génie Electrique et Informatique (GEI’07), Monastir-Tunisie.

– A. Derbel, F. Kallel, A. B. Hamida, N. Ellouze, 2007. Conception et Implémentation
d’une Stratégie de Stimulation Basée sur la Transformée en Ondelette pour les Pro-
thèses Cochléaires. Septièmes Journées Scientifique en Génie Electrique et Informatique
(GEI’07), Monastir-Tunisie.

C O M P É T E N C E
Scientifiques– Electronique analogique, Electronique numérique, Traitement analogique et numé-

rique du signal, Traitement d’images, Techniques multimédia, Appareillage Biomé-
dical (Prothèse auditive, Prothèses Cochléaire, Audiométrie, Antidouleur, Dialyse...)

Langages
de pro-
grammation

– C/C++, Pascal, SPICE, ModelSim

Logiciels – Matlab, Visual Basic, Visual C++, R, Code Composer Studio

Cibles – PIC, Processeur de traitement du signal "DSP"(TMS320C6416)

Bureautique – Word, Excel, Powerpoint, LATEX

A C T I V I T É S P É D A G O G I Q U E S
2010 – Participation au journées de formation sur les Processeurs de Traitement de Signal

DSP "TMS320C64x", Sousse-Tunisie.
2008 – Participation au premières journées de l’école doctorale Sciences et Technologie,

Monastir-Tunisie.
2006 – Accomplir la formation English for Research Purposes organisée dans le cadre de la

formation continue en anglais à l’ENIS.
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– Accomplir le cycle de formation pédagogique organisé dans le cadre des formations
de Mastère à l’ENIS.

Avril 2005 – Participation à l’université de printemps de pédagogie, ENIS.

A C T I V I T É S D ’ E N S E I G N E M E N T
2012 – 2013 – Maître Assistant en Traitement du Signal et de l’image à l’Institut Supérieur d’Infor-

matique et des Mathématiques de Monastir.
• Cours en architecture des processeurs de traitement du signal ; LA STIC 3.
• Cours et TD en programmation des processeurs de traitement du signal ; LA STIC
3 et LF3 STIC .
• Cours en processeurs de traitement du signal ; 3ème année Cycle ingénieur.
• Cours en traitement numérique du signal ; 1ère année Master recherche en Electro-
nique.

2011 – 2012 – Assistant à l’Institut Supérieur d’Informatique et du Multimédia de Gabès.
• 21 heures de cours en codes correcteurs et traitement du signal ; Mastère Pro.SSI.
• 42 heures TP en codes correcteurs et traitement du signal ; Mastère Pro.SSI.
• 42 heures de cours en architecture des ordinateurs ; LATMW1.
• 42 heures de TD en architecture des ordinateurs ; LATMW1.
• 21 heures de cours en processeurs dédiés ; Mastère Pro. en Systèmes Embarqués.
• 42 heures de TP en processeurs dédiés ; Mastère Pro. en Systèmes Embarqués.

2010 – 2011 – Assistant contractuel à la faculté des sciences de Gabès.
• 22.5 heures de cours en fondement du multimédia ; LARI2.
• 22.5 heures de TD en fondement du multimédia ; LARI2.
• 11 heures de cours en fondement du multimédia ; LFSI3.
• 22.5 heures de cours en vision industrielle ; LATIM1.
• 22.5 heures de cours en analyse des images numériques ; LATIM3.
• 22.5 heures de cours en logiciels mathématiques ; LARI1.
• 15 heures de TP en traitement du signal ; LARI1.

2009 – 2010 – Assistant contractuel à la faculté des sciences de Gabès.
• 22.5 heures de cours en transmission du signal ; LATIM2.
• 11 heures de cours en fondement du multimédia ; LATIM1.
• 60 heures de TP en fondement multimédia ; LATIM1.
• 30 heures de TP en traitement d’images ; LATIM3.
• 22.5 heures de cours en traitement du signal ; LATIM 1.
• 60 heures de TD en traitement du signal ; LATIM1.
• 11 heures de TD réseaux sans fils ; LATIM1.

2008 – 2009 – Assistant contractuel à la faculté des sciences de Gabès.
• 11 heures de cours en fondement du multimédia ; LATIM1.
• 60 heures de TD en traitement du signal ; I3.
• 120 heures de TD en architecture des ordinateurs ; LATIM3.
• 22.5 heures de cours en codage des objets multimédias ; LATIM1.
• 15 heures de TD en codage des objets multimédias ; LATIM1.
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2007 – 2008 – Assistant contractuel à la faculté des sciences de Gabès.
• 11 heures de cours en fondement du multimédia ; LATIM1.
• 45 heures de TD en algorithmique et structure de données I ; LFSI1.
• 45 heures de TD en algorithmique et structure de données II ; LFSI1.
• 90 heures de TP en traitement d’images ; I4.
• 90 heures de TP en fondement du multimédia ; LATIM1.
• 90 heures de TD en traitement du signal ; LATIM1.

2006 – 2007 – Assistant contractuel à l’Institut Supérieur d’Informatique et de Multimédia de Sfax.
• 45 heures de TD en système informatique ; TIM1.
• 60 heures de TP en système informatique ; TIM1.
• 120 heures de TP en programmation structuré en langage assembleur ; TMSI2.

2005 – 2006 – Contrat Etudiant Chercheur à l’Institut Supérieur de Biotechnologie de Sfax.
• 60 heures de TP en instrumentation biomédicale ; IBM3.
• 100 heures de TP en bureautique ; IBM1.
• 40 heures de TP en langage C++ ; IBM2.
• 60 heures de TP en programmation en langage Matlab ; IBM2.
• Participation à des activités de travaux pratique, de mini projets et d’encadrement
en traitement de signal, GE2, option ENT,ENI.

T R A V A U X D ’ E N C A D R E M E N T
MParticipation à l’encadrement de projets de fin d’études

– 6 projets de fin d’études, Génie Electrique, Ecole Nationale d’Ingénieurs de Sfax.
– 3 projets de fin d’études, Génie Electrique, Ecole Nationale d’Ingénieurs de Sfax. et

Telnet-Sfax.
– 2 projets de fin d’études, Licence en Informatique, Faculté des Sciences de Sfax.

MEncadrement de projets de fin d’études
– 2 projets de fin d’études, LA3 STIC, ISIM-Monastir.
– 2 projets de fin d’études, ING 3 Electronique, ISIM-Monastir.
– 3 projets de fin d’études, Licence Fondamentale en Sciences Informatique, Faculté

des Sciences de Gabès
– 2 projets de fin d’études, Instrumentation Biomédicale, Institut Supérieur de Biotech-

nologie de Sfax et CHU de Sfax

A C T I V I T É S D I V E R S E S
MContrats de recherche
2008 – 2011 – Membre du projet scientifique de recherche tunisio-français CMCU (code :

09G/1421), intitulé : Étude et implémentation d’algorithmes de débruitage du signal
de la parole pour la réhabilitation des surdités.

– Membre du projet scientifique de recherche tunisio-français DGRS/CNRS (code :
09/R11-18), intitulé : Étude et implémentation d’algorithmes de débruitage du signal
de parole pour implants binauraux.

MStages & Séjours scientifique
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Août 2003 – Stage technicien à la Société Tunisienne d’Electricité et du Gaz "STEG" de Sfax .
Août 2004 – Stage ouvrier à Tunisie Télécom-Centre de Transmission de Données de Sfax.
2008 – 2011 – Stages dans le cadre de la cotutelle de Thèse, Université Claude Bernard-Lyon1, sous

la direction du Pr Christian BERGER VACHON.
Decembre
2012

– Séjours scientifique de haut niveau SSHN, Université Claude Bernard-Lyon1.

L A N G U E S
Arabe – Langue Maternelle, lu parlé et écrit courant
Français – Lu, parlé et écrit
Anglais – Lu, parlé et écrit
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Résumé

La surdité ou bien le dysfonctionnement du système auditif est un handicap qui peut
être parfois grave pour l’être humain. Cette surdité conduit le malentendant à vivre dans
un monde de silence, isolé de toute vie sociale. Les avancées technologiques en ingénierie
biomédicale associées aux développements de la médecine ont permis une amélioration
globale des conditions de vie et une augmentation sensible de la longévité de l’homme
en donnant naissance à de nouveaux appareillages biomédicaux tel que la prothèse co-
chléaire. En effet, la prothèse cochléaire est un appareillage biomédical, implantable au
niveau de l’oreille humaine, qui permet de faire bénéficier certaines personnes atteintes
d’une surdité profonde ou totale bilatérale d’un niveau d’audition inaccessible avec les
prothèses auditives traditionnelles.

La prothèse cochléaire assure la stimulation directe des neurones cochléaires. La pose
d’électrodes dans des zones bien définies dans la cochlée permet de stimuler sélectivement
les cellules sensorielles suivant différentes fréquences et différentes intensités électriques
qui sont générées suite à un traitement spécifique du signal de parole. La stimulation élec-
trique apportée par les électrodes permet un niveau de compréhension intéressant tout
en notant une adaptation progressive du patient à son appareillage suite à une phase de
rééducation.

Différents travaux de recherche ont été établis afin d’évaluer l’intelligibilité de la parole
chez les sujets implantés en environnements silencieux et bruité. Les résultats ont mon-
tré une bonne intelligibilité de la parole variant entre 80% et 90% en milieu silencieux.
Toutefois, les capacités de perception de la parole par les patients implantés se dégradent
en environnement bruité. Afin d’améliorer l’intelligibilité de la parole en milieu bruité,
différents algorithmes de réduction de bruit, appelés aussi algorithmes de débruitage, ont
été développés dans le cas de l’implant cochléaire. Ces algorithmes peuvent être classés
principalement en deux catégories. Pour la première catégorie, les algorithmes de débrui-
tage sont intégrés en totalité au niveau de la stratégie de codage adopté pour l’analyse du
signal de parole au niveau de l’implant en modifiant certaine fonction tel que la fonction
de compression. Pour la deuxième catégorie, une étape de prétraitement basés sur un al-
gorithme de débruitage spécifique est tout d’abord adoptée. Le signal de parole rehaussé
ainsi obtenu à la suite de cette étape de prétraitement est ensuite traité par l’algorithme
de codage utilisé par l’implant. Dans ce cas, différents algorithmes de débruitage initiale-
ment développés pour des sujets normoentendants ont été adoptés dans le cas de l’implant
cochléaire.
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Résumé

Le développement progressif de la technologie a rendu possible l’implantation des pa-
tients d’une manière bilatérale. L’implantation cochléaire bilatérale consiste à poser un
implant cochléaire au niveau de chaque oreille. Elle permet de plus en plus l’accès à l’au-
dition humaine naturelle qui est une audition binaurale. Ceci est assuré grâce à la restau-
ration des capacités de localisation spatiale, l’amélioration de la sélectivité fréquentielle et
de la reconnaissance de la parole dans le bruit. De nombreux travaux de recherche ont mis
en évidence les performances d’une stimulation bilatérale par rapport à une stimulation
unilatérale en milieux silencieux et bruité. Les résultats ont montré qu’une stimulation
bilatérale permet d’améliorer l’intelligibilité de la parole surtout en milieu bruité par rap-
port à une stimulation unilatérale. D’autre part, le patient implanté se trouve très souvent
dans des environnements où le niveau de bruit est assez élevé. Dans ce cas, même avec
une stimulation bilatérale, l’intelligibilité de la parole reste insuffisante et la perception
sonore est difficile. Afin d’améliorer davantage l’intelligibilité en milieu bruité, différents
algorithmes de débruitage ont été développés dans le cas de l’implant cochléaire bilatéral.
Ces algorithmes, basés sur un traitement multi-microphones, présentent l’inconvénient du
coût assez élevé et de la complexité. Un traitement à base de deux microphones (chaque
implant est équipé d’un seul microphone) pourrait être considéré comme étant le meilleur
compromis entre un traitement mono-microphone et un traitement multi-microphones.

Dans ce travail de thèse, nous avons traité le problème de l’intelligibilité de la parole
dans le cas de l’implant cochléaire, particulièrement l’implant cochléaire bilatéral, en pro-
posant de nouvelles approches de traitement du signal pour le débruitage du signal de
parole. Ce travail est structuré principalement en trois parties :

Dans la première partie, nous avons présenté une première approche de traitement du
signal de parole visant l’amélioration de l’intelligibilité de la parole dans le cas de l’implant
cochléaire. Un protocle expérimental a été adopté pour la comparaison des performances
de trois modes de stimulation cochléaire. Les performances de ces trois modes de stimu-
lation ont été comparées dans le cas de deux vitesses d’analyse, en milieux silencieux et
bruité à différents niveaux du RSB. Le premier mode est la stimulation unilatérale. Le
deuxième mode est la stimulation bilatérale symétrique où les bancs de filtres utilisés
pour l’analyse des signaux de parole au niveau des voies droite et gauche sont identiques.
Le troisième mode est la stimulation bilatérale décalée où les deux oreilles sont stimulées
par des signaux différents (le banc de filtres utilisé pour l’analyse du signal de parole au
niveau de la voie droite est fréquentiellement décalé par rapport à celui de la voie droite).
Les performances de ces trois modes de stimulation ont été comparées d’une manière sub-
jective avec une population de cinquante sujets normoentendants.

Dans la deuxième partie, les performances de deux algorithmes bi-voie pour la réduc-
tion du bruit dédiés pour implant cochléaire bilatéral ont été comparées. Ces algorithmes
sont basés sur deux étapes de traitement : Une étape d’estimation de la densité spectrale
de puissance (dsp) du bruit au niveau de chaque voie suivi d’une étape d’estimation des
signaux rehaussés. Le principe d’un algorithme bi-voie pour l’estimation de la dsp du
bruit est d’abord présenté. Cet algorithme a été basé sur le calcul des dsp et de la densité
interspectrale (dip) des signaux bruités et il a été développé sous l’hypothèse des bruits
parfaitement décorrélés. L’estimation des signaux rehaussés a été déterminée en se basant
sur la technique de la soustraction spectrale. Le principe des algorithmes de la soustrac-
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Résumé

tion spectrale non linéaire bi-voie et la soustraction spectrale multi-bande bi-voie sont
alors détaillés. Les performances de ces deux algorithmes ont été évaluées et comparées
d’une manière subjective dans le cas de l’implant cochléaire bilatéral, en simulation en
premier lieu avec des sujets normoentendants puis avec des sujets implantés portant l’im-
plant cochléaire Digisonic SP binaural de Neurelec. Cette étude comparative est établie à
différents niveaux du RSB et dans le cas de deux configurations spatiales des sources de
bruit (d’abord en présence d’une seule source de bruit, puis en présence de trois sources
de bruit).

Enfin, dans la troisième partie, un deuxième algorithme de réduction de bruit dédié
pour l’implant cochléaire bilatéral a été proposé. Cet algorithme est basé sur la méthode
de la soustraction interspectrale qui est développé sous l’hypothèse des bruits peu corrélés
ou diffus. L’exploitation de l’algorithme de la soustraction interspectrale repose principa-
lement sur l’estimation de la dip des bruits. Dans ce travail, une nouvelle approche basée
sur l’algorithme des statistiques minimales améliorées a été proposée pour l’estimation
de la dip des bruits. Deux autres approches présentées dans la littérature basées sur la
technique de détection d’activité vocale et la technique des statistiques minimales ont
été aussi considérées. Les performances de l’algorithme de la soustraction interspectrale
sont évaluées dans le cadre de l’implant cochléaire bilatéral en simulation dans le cas de
chacun des estimateurs de la dip des bruits considérés avec des sujets normo-entendants.
Cette étude comparative est établie dans les mêmes conditions expérimentales que l’expé-
rience précédente (différents niveaux du RSB et deux configurations des sources de bruit).
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a b s t r a c t

In this paper, two speech enhancement algorithms (SEAs) based on spectral subtraction (SS) principle
have been evaluated for bilateral cochlear implant (BCI) users. Specifically, dual-channel noise power
spectral estimation algorithm using power spectral densities (PSD) and cross power spectral density
(CPSD) of the observed signals was studied. The enhanced speech signals were obtained using either Dual
Channel Non Linear Spectral Subtraction ‘DC-NLSS’ or Dual-Channel Multi-Band Spectral Subtraction ‘DC-
MBSS’ algorithms. For performance evaluation, some objective speech assessment tests relying on Per-
ceptual Evaluation of Speech Quality (PESQ) score and speech Itakura-Saito (IS) distortion measurement
were performed to fix the optimal number of frequency band needed in DC-MBSS algorithm. In order to
evaluate the speech intelligibility, subjective listening tests were assessed with 50 normal hearing listen-
ers using a specific BCI simulator and with three deafened BCI patients. Experimental results, obtained
using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios
(SNR), showed that DC-MBSS algorithm improves speech understanding better than DC-NLSS algorithm
for single and multiple interfering noise sources.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Most cochlear implant (CI) users perform well in quiet listening
conditions and many users can now achieve even more than 80%
word recognition scores regardless the used device [28]. However,
speech recognition scores are enormously degraded in noisy envi-
ronments [25]. Furthermore, as mentioned by CI users, better and
comfortable speech recognition in noisy environments would be
considered as one of their most significant challenges [23]. As a
first trial to improve speech intelligibility in noisy environments,
individuals with severe to profound hearing loss can now be im-
planted with two cochlear implants, one in each ear. In fact, a bilat-
eral cochlear implantation provides patients the advantages of
bilateral information. Bilateral hearing permits optimal perfor-
mance of the auditory system, with a better understanding of
speech in quiet and even better understanding in noisy environ-
ments [22]. Recent works compared also speech performance in
noisy environment with matched bilateral CI with respect to uni-
lateral CI users. BCI group showed significantly better performance
on speech perception in noisy environments compared to the uni-
lateral CI subjects [26,7,8]. Different other clinical studies have
All rights reserved.
demonstrated a substantial increase in speech intelligibility with
bilateral cochlear implants compared to monaural listening config-
urations in noise [30,33,18].

To reduce background effects of noise, some speech enhance-
ment algorithms originally developed for normal hearing listeners
have been applied to CI speech processing [17,36,14,11]. These
algorithms were able to somewhat improve CI users’ performance
in noisy listening conditions. Considerably, larger benefits in
speech intelligibility could be obtained when resorting to multi-
microphone adaptive signal processing strategies, instead. Such
strategies make use of spatial information due to the relative posi-
tion of the emanating sounds, and could therefore better exploit
situations in which the target and masker are spatially separated
[13,34,5]. Several noise-reduction algorithms using two or more
microphones were also available, and most of these proposed algo-
rithms were based on beamformer techniques, especially, the
adaptive beamformer algorithms. The performance of adaptive
beamforming with two microphones with bilateral cochlear im-
plant was assessed by different studies [29]. In the study of Chung
et al. [5], authors conducted experiments to investigate whether
directional microphones and adaptive multi-channel noise reduc-
tion algorithms could enhance overall CI performance. Results
indicated that directional microphones could provide an average
improvement of around 3.5 dB. Spriet et al. [29] investigated the

http://dx.doi.org/10.1016/j.apacoust.2011.06.010
mailto:fathikallel@yahoo.fr
http://dx.doi.org/10.1016/j.apacoust.2011.06.010
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust
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performance of the beam pre-processing strategy in the Nucleus
Freedom speech processor with five CI users. The performance
with the beam strategy was evaluated at two noise levels and with
two types of noise, speech-weighted noise and multi-talker babble.
The tested algorithm improved the speech reception threshold by
approximately 5 to 8 dB. Kokkinakis and Loizou [16] proposed a
multi-microphone based adaptive noise reduction strategy exploit-
ing information simultaneously collected by two behind-the-ear
processors (BTE) microphones. Four microphones were employed
(two omni-directional and two directional) in each of the two
BTE processors (one per ear). Results indicated that the proposed
multi-microphone strategies improved speech understanding in
single and multi-noise source scenarios.

We note that mush of the focus of the previously published stud-
ies has been to investigate, in the mono-channel case, the pre-pro-
cessing noisy speech signal by noise reduction algorithms in order
to feed enhanced signals to CI listeners. Only a small number of SEAs
have been evaluated to the bilateral case. As one contribution of this
work is the application of SEAs for the BCI users in an uncorrelated
additive babble noise environments. We propose then new SEAs
built upon series of previously published works on spectral subtrac-
tion algorithms. The first is based on a non linear spectral subtrac-
tion approach according to the work of Berouti et al. [1]. Whereas
the second is built on a multi-band spectral subtraction algorithm
proposed by Kamath and Loizou [15] and Udrea et al. [32].

Our proposed SEAs namely DC-NLSS and DC-MBSS are an exten-
sion of the previously mentioned mono-channel spectral subtrac-
tion algorithms to the dual-channel conception case. However,
spectral subtraction principles are combined together with a noise
PSD estimation technique based on the use of two omni-direc-
tional microphones. This noise PSD estimator takes into account
the coherence between both received noisy speech signals.

The paper is outlined as follows. Section 2 provides theoretical
overview of SEAs. Section 3 derives bilateral cochlear implant sim-
ulator principle. Section 4 evaluates the experimental results. Sec-
tion 5 gives an overall discussion of all obtained results. Finally,
Section 6 devotes to the conclusion.
2. Speech enhancement algorithms

The bilateral cochlear implant configuration is as illustrated in
Fig. 1. Both left and right cochlear implants are fitted with one
microphone. The two received noisy speech signals (y1(n) and
y2(n)) are processed together with the proposed SEAs to generate
enhanced speech signals (ŝ1ðnÞ and ŝ2ðnÞ) which are then used for
stimulation.

We suppose that the noise received by the microphones can be
represented by two additive uncorrelated babble noise signals so
y1(n) 
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Fig. 1. Block diagram of the considered dual-
that the picked up noisy speech signals can be expressed in tempo-
ral domain as follows:

yiðkÞ ¼ siðkÞ þ diðkÞ i ¼ f1;2g ð1Þ

where ‘i’ is the microphone index, yi(k), si(k) and di(k) represent
respectively noisy speech, clean speech and noise signals.

Note that i = 1 corresponds to the signal picked up by the micro-
phone placed in the right ear and i = 2 corresponds to the signal
picked up by the microphone placed in the left ear. The short-time
Fast Fourier Transforms (FFT) of the received noisy signals is for-
mulated as follows:

Yi;Nðf ;nÞ ¼ Si;Nðf ;nÞ þ Di;Nðf ;nÞ i ¼ f1;2g ð2Þ

where Yi,N(f,n), Si,N(f,n) and Di,N(f,n) denote respectively the N-point
FFTs of the yi(k), si(k), and di(k) for the frame n and the fth frequency
bin. The parameter ‘N’ is left out for simplicity.

The proposed dual-channel speech enhancement algorithm
contains then two major parts:

– Noise PSD estimation based on PSD and CPSD computation of
received noisy speech signals.

– Enhanced speech signal estimation using spectral subtraction
approach.

2.1. PSD and CPSD estimation

The noise PSD estimation needs a PSD and a CPSD estimation of
the noisy received speech signals. The PSD of the noisy signal at the
first channel ‘Py1y1(f,n)’, and at the second channel ‘Py2y2(f,n)’, and
the CPSD ‘Py1y2(f,n)’ can be estimated as follows [19]:

PYiYiðf ;nÞ ¼ k � PYiYiðf ;n� 1Þ þ 1� kð Þ � Yiðf ;nÞ � Y�i ðf ;nÞ i ¼ f1;2g
PY1Y2ðf ;nÞ ¼ k � PY1Y2ðf ;n� 1Þ þ 1� kð Þ � Y1ðf ;nÞ � Y�2ðf ;nÞ

ð3Þ

where � is the complex conjugate operator, k is a smoothing factor
usually close to 1. This factor should satisfy the two following
constraints:
– For lower values, the estimation takes into account the speech

short term stationarity.
– For higher values, this factor serves to minimize the estimator

variance.

A previous study [9] showed that for 16 kHz sampling fre-
quency with 256 samples per frame and a 50% overlap, the upper
limit values of k were around 0.6–0.8. In this study, we choose
k = 0.8.
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2.2. Dual channel noise PSD estimation

For the derivation of the two-channel noise PSD estimator, the
following assumptions are considered:

– The Speech and the noise signals are uncorrelated so that the
CPSD between speech and noise signals PSiDj(f) = E{Si(f)�Dj(f)⁄} =
0, " {i,j} = {1,2}2, where E{�} and ⁄ denote respectively the
expected value and the complex conjugate operators.

– The distance between both microphones is sufficiently high
(180 mm) and the high coherence of the diffuse noise field at
low frequencies is neglected. Therefore, the noise received by
the microphones can be represented by two uncorrelated noise
sources which implies that the noise CPSD PD1D2(f) =
E{D1(f)�D2(f)⁄} = 0.

– The speaker, placed in the frontal direction at 0 degree, is close
to the two well calibrated omnidirectional microphones. The
PSD of speech signals are then considered locally identical
(S1(f) = S2(f) = S(f)).

Based on the work of Dörbecker and Ernst [6], an extended dual
channel noise PSD estimator is proposed tacking into account the
difference between the PSD of the noise sources. The noise PSD
in the right channel ‘PD1D1(f,n)’ and in the left channel ‘PD2D2(f,n)’
can be computed using the following equation:

PD1D1ðf ;nÞ ¼ PY1Y1ðf ;nÞj j � PY1Y2ðf ; nÞj j
PD1D2ðf ;nÞ ¼ PY2Y2ðf ;nÞj j � PY1Y2ðf ; nÞj j

ð4Þ

In order to improve the performance of the considered noise
PSD estimator, a smoothing stage is considered. The estimated
PSD of noise signals in the right and in the left channels are pro-
cessed according to Eq. (5) in order to compute the smoothed noise
PSDs (PD1D1; PD2D2).

PD1D1ðf ;nÞ ¼ k0 � PD1D1ðf ;n� 1Þ þ 1� k0ð Þ � PD1D1ðf ;nÞ
PD2D2ðf ;nÞ ¼ k0 � PD2D2ðf ;n� 1Þ þ 1� k0ð Þ � PD2D2ðf ;nÞ

ð5Þ

where k0 is a smoothing parameter in the range [0.5, 1]. In this
study, k0 is fixed at 0.9.
Fig. 2. Noise PSD and estimated noise PSD on th
The proposed noise PSD estimation is applied to the speech
samples corrupted by babble noise at 0 dB. Fig. 2 depicts the real
and the estimated noise PSDs for f = 300 Hz at the left and the right
channels. It is interesting to observe the good noise PSD estimation
on both channels.

2.3. Spectral subtraction algorithms

In our study, two spectral subtraction algorithms are considered
and compared in the case of BCI. The first algorithm was described
by Berouti et al. [1] where the noise power spectrum is multiplied
by an over-subtraction factor a and subtracted from the noisy
speech power spectrum in order to minimize the artefacts due to
residual and musical noise. This algorithm is extended to a dual-
channel non linear spectral subtraction (DC-NLSS) algorithm. The
estimate of the clean speech power spectrum at the first and the
second channel is given by the following equation:

jbSiðf Þj2¼
jYiðf Þj2�ai �PDiDiðf Þ if jYiðf Þj2>b �PDiDiðf Þ
b �PDiDiðf Þ else

(
; i¼f1;2g ð6Þ

where ‘i’ is the microphone index, ai (ai > 1) is the over-subtraction
factor, which is a function of the segmental Signal-to-Noise Ratio
(SSNR), and b(0 < b < 1) is the spectral floor.

This implementation assumes that the noise affects the speech
spectrum uniformly and the over-subtraction factor subtracts an
overestimate of the noise over the whole spectrum. However, in
real world noise, the noise spectrum is not uniform for all frequen-
cies. For example, in the case of babble noise, most of the noise en-
ergy is concentrated in the low-frequency area. In order to take
into account the fact that real world noise affects the speech spec-
trum differently at various frequencies, it becomes imperative to
estimate a suitable factor that will subtract just the necessary
amount of the noise spectrum from each frequency subband. That’s
why a multi-band spectral subtraction approach was proposed by
Kamath and Loizou [15] and adopted by Udrea et al. [32]. In multi-
band spectral subtraction approach, the noisy and the noise
spectrum are divided into L non-overlapping bands, and spectral
subtraction is performed independently in each frequency band.
This multi-band spectral subtraction algorithm is also extended
to a dual-channel configuration (DC-MBSS). Hence, the estimate
e right (top) and the left (bottom) channels.



F. Kallel et al. / Applied Acoustics 73 (2012) 12–20 15
of the clean speech power spectrum in the lth band at the first and
the second channels is given by the following equation:

jSilðf Þj2 ¼ jYilðf Þj2 � ail � dl � PlDiDi
ðf Þ i ¼ f1;2g; bl < f < el ð7Þ

where ail is the over-subtraction factor of the lth frequency band at
the ith channel and dl is a tweaking factor that can be individually
set for each frequency band to customize the noise removal proper-
ties. bl and el are the beginning and ending frequency bins of the lth
frequency band.

The band specific over-subtraction factor ail is a function of the
SSNRil of the lth frequency band which is calculated as given by the
following equation:

SSNRilðdBÞ ¼ 10log10

Pel

f¼bl

jYilðf Þj2

Pel

f¼bl

�PlDiDiðf Þ

0BBB@
1CCCA i ¼ f1;2g ð8Þ

According to the SSNRil values, the over-subtraction factor ail is cal-
culated as follows:

ail ¼
4:75 SSNRil < �5
4� 3

20 SSNRil �5 < SSNRil < 20
1 SSNRil > 20

8><>: i ¼ f1;2g ð9Þ

While the use of the over-subtraction factor ail provides a de-
gree of control over the noise subtraction level for each frequency
band, the use of multiple frequency bands and the use of the dl

weights provide an additional degree of control within each fre-
quency band. Since most of the speech energy is present in the
lower frequencies, smaller dl values are used for low frequency
bands in order to minimize speech distortion. The values of dl are
empirically determined and set to following values [32]:

dl ¼

1 60 Hz < fl < 300 Hz
1:3 300 Hz < fl < 1 kHz
1:6 1 kHz < fl < 2 kHz
1:8 2 kHz < fl < 3 kHz
1:3 3 kHz < fl < 8 kHz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð10Þ

The factors ail and dl can be adjusted for each frequency band and
for different speech conditions to get better speech quality. Finally,
the negative values in the modified power spectrum calculated
according to Eq. (7) are floored to the noisy power spectrum:
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Fig. 3. Block diagram of the
jŜilðf Þj2 ¼
jŜilðf Þj2 if jŜilðf Þj2 > b � �PlDiDiðf Þ
b � PlDiDiðf Þ otherwise

(
; i¼ f1;2g; bl < f < el

ð11Þ

where the spectral floor parameter is set to b = 0.01. The modified
spectra of each frequency band ðĵsilðf ÞjÞ are recombined to obtain
the enhanced speech spectrum ðĵsiðf ÞjÞ. This modified spectrum is
combined with the phase information of the noisy input signal
(hYiðf Þ ¼ angleðYiðf ÞÞ to reconstruct the time speech signal by using
the Inverse Fast Fourier Transform (IFFT) in conjunction with the
overlap and add method. The enhanced output signals on both
channels are then computed according to the following equation:

ŝiðkÞ ¼ IFFTðjŜiðf Þj � ejhYiðf ÞÞ i ¼ f1;2g ð12Þ
3. Bilateral cochlear implant simulator

In order to investigate the behavior of the above SEAs in the
case of cochlear implant, vocoder stimulations were used. How-
ever, it was shown by many (e.g. [35]) that these simulations pro-
vide results consistent with the outcome of cochlear implants and
that vocoded speech signals could be presented to normal hearing
listeners in the absence of confounding factors associated with co-
chlear implants.

Fig. 3 gives the block diagram of the considered CI simulator.
The conception of this simulator is based on the 12-channel Neur-
elec Digisonic SP cochlear implant. Both left and right enhanced
speech signals are processed with the same CI simulator.

The enhanced speech signal, sampled at 16 kHz, is divided into
50% overlapping frames by the application of a Hanning window
function. The length of the window (frame) is set to V = 128 sam-
ples. FFT is performed on the previously windowed speech signal
(input blocks of V = 128 samples). The obtained short time spec-
trum is passed through a bank of band-pass filters.

According to psychoacoustic evidence, cochlear tonotopy follows
a lin-log scale (linear in low frequencies and logarithmic in high fre-
quencies) which can be simulated by a bark scale. So, the cut-off fre-
quencies between the different frequency bands are chosen in order
to respect this scale. The mapping between the bark scale and the
frequencies scale is non-linear according to the non-linearity of
the human ear. An approximate analytical expression for describing
the conversion from linear frequency f, into the critical band number
B in bark is given by the following equation [31]:

Bðf Þ � 6:7 � arsinh
f � 20

600

� �
ð13Þ
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Table 1
Number of FFT bins related to each frequency analysis band and its associated center frequencies in Hz.

Analysis frequency
band ‘z’

1 2 3 4 5 6 7 8 9 10 11 12

Left and right channel
Cut-off frequencies

(Hz)
300–
448

448–
616

616–
810

810–
1041

1041–
1318

1318–
1654

1654–
2065

2065–
2568

2568–
3187

3187–
3950

3950–
4892

4892–
6055

Number of lines Nz 1 1 2 2 2 3 3 4 5 6 8 9
Starting line nstartz 3 4 5 7 9 11 14 17 21 26 32 40
Center freqs fmid (Hz) 375 500 687 937 1187 1500 1875 2312 2875 3562 4437 5500
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Fig. 4. Experimental setup (Anechoic room) LS3 = speech signal, LS2, LS4 and
LS5 = noise signal, LS1 and LS6 were not used.
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The bandwidth of those filters matched the frequency range
corresponding to the cochlear segment excited by electrical stimu-
lation. Table 1 presents the cut-off frequencies, the number of lines
(Nz), the starting line (nstartz) assigned to each frequency band ‘z’
(z = 1, . . . , 12) and its associated center frequency (fmid).

The power in the frequency analysis band ‘z’ (E(z)) can be com-
puted using the following power estimation equation:

EðzÞ ¼
Pf¼nstartzþNz�1

f¼nstartz
eðf Þ

Nz
; z ¼ 1; . . . ;12 ð14Þ

where e(f) is the power levels of the frequency bin ‘f ’. The output of
this analysis is a vector of power values for each frame of data.
According to the advance combination encoder (ACE) strategy [4]
and for each frame, only the first eight frequency bands presenting
the most important power levels are used for vocoded speech signal
reconstruction. The power levels of the remaining bands are set to
zero.

For each frequency analysis band ‘z’, a Hanning window ‘w(v)’ is
weighted by its related power value ‘E(z)’ to get a modified Han-
ning window called ‘the envelope: Env(z,v)’ according to the fol-
lowing equation:

Envðz;vÞ ¼ EðzÞ �wðvÞ; z ¼ 1; . . . ;12; v ¼ 1; . . . ;V ð15Þ

To prevent sharp variations, a smoothing is performed throughout
the bands using a further low pass filtering with a 150 Hz cutoff
frequency.

In order to get the carrier synthesis noise signals, a white noise is
shaped to each frequency analysis band by a 3rd order band-pass
Butterworth filter. For each frequency band, a vocoded speech signal
is synthesized by modulating the obtained narrow band white noise
carrier with its corresponding smoothed envelope. Finally, all the
synthesized vocoded signals coming from the different frequency
analysis bands are summed up and the output is adjusted to have
the same long-term root mean square energy as the input speech
signal (70 dB).
4. Performance evaluation

In this section, the proposed speech enhancement algorithms
are evaluated using both objective measures and subjective listen-
ing tests.
4.1. Phonetic material

The used phonetic material is the French Lafon set [21] which
contains twenty lists each one composed of seventeen 3-phoneme
words pronounced by a single male talker. This is a commonly used
speech stimuli for intelligibility assessment in French. Sound level
was calibrated to 70 dB SPL. All theses lists are processed in the an-
echoic room of the ORL department of the Edouard-Herriot Hospi-
tal of Lyon-France with an additive babble noise. The SNRs varied
from �3 dB to 6 dB with 3 dB steps.
The experimental setup is presented in Fig. 4. The target speech
signal is always placed directly in front of the listener (a KEMAR
mannequin) at 0� azimuth (LS3 position). Speech signals are cor-
rupted with either one or three noise interferers. In the single
interferer condition, a single speech babble noise source is pre-
sented from the right side of the listener (LS5 position). When mul-
tiple interferers are present, three interfering noise sources are
placed asymmetrically either across both hemifields (�60�, 60�,
and 90� corresponding respectively to LS2, LS4 and LS5 positions).
The speech stimuli are processed offline with MATLAB software.
4.2. Objective measures

The performance of the previously described DC-MBSS algo-
rithm is evaluated with different number of bands varying from
one to eight (L = 1–8). The speech spectrum is split into different
bands mapped to the bark scale as described is Section 3. The num-
ber of FFT bins (NL) and the start bin (nstartL) of each frequency



Table 2
Number of FFT bins related to each band for different number of frequency analysis bands.

Number of analysis frequency bands ‘L’ Band

1 2 3 4 5 6 7 8

2 NL 11 53
nstartL 1 12

3 NL 6 15 43
nstartL 1 7 22

4 NL 4 7 16 37
nstartL 1 5 12 28

5 NL 3 5 8 17 31
nstartL 1 4 9 17 34

6 NL 2 4 5 10 15 28
nstartL 1 3 7 12 22 37

7 NL 2 3 4 6 9 15 25
nstartL 1 3 6 10 16 25 40

8 NL 2 2 3 4 7 9 15 22
nstartL 1 3 5 8 12 19 28 43
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Fig. 5b. Mean IS values in right and left channel.
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band are recapitulated in Table 2 for different number of frequency
analysis bands.

The two following objective measurements are considered for
performance assessment:

– Perceptual Evaluation of Speech Quality (PESQ) score which
ranges from 0.5 (for the worst case) to 4.5 (for the best case)
according to the ITU-T Recommendation P. 862 standard [12].

– Itakura-Saito (IS) distance which is based on the similarity or
difference between the all-pole model of the clean and the
enhanced speech signals [24].

This experiment is performed with only one interfering babble
noise source at 0 dB SNR. Results are shown in Fig. 5a and Fig. 5b
respectively indicating the mean PESQ score and IS distance versus
the number of frequency bands for both left and right channels.

From Fig. 5a, we observe that the PESQ scores increased signif-
icantly with the number of frequency bands up to 6 for both chan-
nels. Further increase in the number of bands is not found to be
beneficial. Additionally, we can see that the PESQ scores for the left
channel (PESQ-left) are greater than the PESQ scores for the right
channel (PESQ-right). This can be explained by the position of
the interfering noise source which is closer to the right ear.
On the other hand, the IS values, given by Fig. 5b, decreased with
the number of bands for both channels. This is because most
of the residual noise is reduced leading to an improvement in
speech quality.
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Fig. 5a. Mean PESQ scores in right and left channel.
4.3. Subjective evaluation

In this section, we investigate the potential benefits of process-
ing the noisy speech signal with the proposed DC-NLSS and DC-
MBSS algorithms using six frequency analysis bands. Therefore,
to assess the performance of the aforementioned noise reduction
algorithms, comprehensive phoneme recognition tests are firstly
conducted in BCI simulation with normal hearing listeners and sec-
ondly with BCI implantees.

4.3.1. Listeners
The performance of the proposed speech enhancement algo-

rithms is evaluated with a population of 50 normal hearing sub-
jects and 3 postlingually implantees. Normal hearing subjects
ranged from 18 to 32 years. BCI subjects are fitted bilaterally with
the binaural Digisonic SP multichannel implant device manufac-
tured by Neurelec Corporation (France) and their biographical data
are indicated in Table 3. All participants were native French speak-
ing subjects. Listening sessions took place in the Cochlear Implant
Room of the Edouard-Herriot Hospital. Subjects’ hearing is checked
prior to the experiment.
Table 3
Biographical data of recruited BCI implantees.

Subject 1 Subject 2 Subject 3

Age (years) 56 36 48
Gender F M F
Past surgery (years) 4 4 4



18 F. Kallel et al. / Applied Acoustics 73 (2012) 12–20
4.3.2. Listening session procedure
The listening tests are conducted using a personal computer

connected to a CD player (PHILIPS-CD723). An audiometer (MAD-
SEN-Orbiter 922) is used for calibration and intensity level adjust-
ment. Stimuli are presented bilaterally to the subjects using a
closed professional ‘Sennheiser’ HD250 linear headphones at a
comfortable level calibrated to 70 dB SPL.

Prior to the formal testing, a training session containing 10 ran-
dom words is administrated in order to familiarize each subject
with the stimuli. No scores are calculated in the training session.
Following the practice session, the subjects were tested in the var-
ious experimental conditions. During the testing session, the sub-
jects are instructed to repeat the words they heard. In total,
there are 24 testing conditions (3 processing methods � 4
SNRs � 2 noise interfering configurations). A list of 17 words is
used for each of the 20 firstly presented conditions. Four randomly
selected lists are reutilized for the remaining conditions. A sequen-
tial test order, starting with lists processed in noise from the high-
est SNR (6 dB) to the lowest SNR (�3 dB) is employed. We take this
sequential approach in order to give the subjects some time to
adapt to the listening in noisy conditions. At the end of each listen-
ing session, the responses of each subject are collected, stored and
scored off-line with the percentage of correctly repeated
phonemes.
4.3.3. Results
The performance of the proposed speech enhancement algo-

rithms is carried out through listening tests. Tests are conducted
in BCI simulation with normal hearing listeners and BCI implanted
subjects. Intelligibility scores for this experiment are derived from
the percentage of correctly repeated phonemes per test condition.
Chi2 tests with the following parameters are performed to exam-
ine the effects of the considered factors:

– Repeated measures (the same subjects underwent all the
situations)

– Dependant variable (Recognition score in percent)
– Three factors:
� Method (Noisy, DC-NLSS, DC-MBSS)
� Noise interfering configuration (‘90�’ and ‘�60�, 60�, 90�’)
� SNR (�3 to 6 dB with 3 dB step, this last factor was taken as

random; the first two factors were fixed).

This model, with both fixed and random effects, is known as
mixed-effect model, and is a standard for data analysis [2]. We
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Fig. 6. Recognition score (mean ± standard error) in the presence of babble noise with noi
configurations.
fit our models using the ‘lmer’ program of the ‘lme4’ package [3]
of the statistical programming language and software environment
R [27].
4.3.3.1. Results with normal hearing subjects. Fig. 6 shows the exper-
imental results obtained with normal hearing subjects. Results re-
vealed a significant main effect of the method (Chi2[2] = 526,
p < 0.001), of the SNR (Chi2[3] = 4178, p < 0.001) and of the noise
interfering configuration (Chi2[1] = 97, p < 0.001). In addition, a
significant interaction is observed between the method and the
SNR (Chi2[6] = 45, p < 0.001). No significant interaction between
the method and the noise interfering configuration (Chi2[2] = 3,
p = 0.122) and between noise interfering configuration and the
SNR (Chi2[3] = 5, p = 0.4) are noticed.

Post-hoc comparisons are run to assess the significant improve-
ments in scores obtained with the considered methods at different
SNRs. We use the Tukey HSD test via the general linear hypothesis
test ‘glht’ function from multiple comparison ‘multcomp’ package of
R. The mean recognition scores obtained using the DC-NLSS speech
enhancement method are significantly higher (p < 0.001) than the
scores obtained with the unprocessed noisy speech signals for all
SNRs. Furthermore, the mean recognition scores achieved with
the DC-MBSS method are significantly higher than those obtained
with the DC-NLSS method (p < 0.001) at 3, 0, and �3 dB SNRs; but
do not differ significantly at 6 dB (p = 0.142).
4.3.3.2. Results with BCI implantees. Experimental results obtained
with three BCI implantees are presented in this section. Fig. 7a
and Fig. 7b show the individual subject scores obtained with three
methods when single and three interfering noise sources are
respectively considered.

Statistical tests indicate a main significant effect of the method
(Chi2[2] = 70, p < 0.001), of the SNR (Chi2[3] = 206, p < 0.001) and
of the noise interfering configuration (Chi2[1] = 10, p < 0.001).
However, there is no significant interaction between the method
and the SNR (Chi2[6] = 3, p = 0.7) and between the method and
the noise interfering configuration (Chi2[2] = 1, p = 0.8).
5. Discussion

In the present study, we assessed the benefit of two proposed
DC-NLSS and DC-MBSS SEAs. A subjective comparative study was
considered by computing the mean recognition scores at different
SNRs and noise interfering configurations. Performance evaluation
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Fig. 7. Phoneme’s recognition scores with deafened BCI subjects for different methods at all SNRs.
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was conducted with normal hearing listeners using a specific BCI
simulator and with BCI implantees.
5.1. Speech enhancement algorithms vs SNRs

As shown in Fig. 6, compared with recognition score obtained
using unprocessed noisy speech, an average improvement of 13%
and 7% was achieved respectively with DC-MBSS and DC-NLSS
algorithms. It was worthwhile noticed that this improvement
was fairly constant at 6 dB and 3 dB, but was decreased for lower
values of SNR (0 dB and �3 dB). This behavior was confirmed with
the BCI implantees (Fig. 7) where an average improvement in rec-
ognition score between 9% (at positive SNR) and 4% (at �3 dB SNR)
was observed when DC-NLSS was considered. It is also interesting
to note the reasonably better performance of the DC-MBSS over
DC-NLSS where the average improvement was between 8% (at po-
sitive SNR) and 6% (at �3 dB SNR). To sum up, our results revealed
the outperformance of the DC-MBSS over the DC-NLSS especially
for high SNRs. This may be due to the fact that DC-MBSS takes into
account that noise signal affects the speech spectrum differently at
various frequencies, and the over-subtraction coefficients are cal-
culated at each frequency band.
5.2. Speech enhancement algorithms vs interfering noise source

First, the performance of speech enhancement algorithms was
evaluated with normal hearing subjects using a BCI simulator. In
the case of a single interfering noise source, the average improve-
ment was about 8% and 16% for respectively DC-NLSS and DC-
MBSS speech enhancement algorithms and this when compared
to the scores obtained with the vocoded noisy speech signals.
The Average improvement dropped to 6% and 13% for respectively
DC-NLSS and DC-MBSS SEAs in the presence of three interfering
noise sources.

Next, the same experiment was performed with three BCI
implantees. When the DC-MBSS algorithm was applied, we ob-
served a small benefit in term of recognition score from 14% when
three interfering noise sources were present to around 18% in the
presence of only one interfering noise source. This improvement
in performance was a bit smaller for the case of the DC-NLSS
algorithm.

As reported, the improvement in recognition score was smaller
when multiple noise sources were present. This could be in part
attributed to the fact that, in the binaural hearing literature, when
both CI devices are available, BCI listeners can benefit from the
head-shadow effect which may occur mainly when speech and
noise are spatially separated [30,10,20].
6. Conclusion

Two speech enhancement algorithms based on spectral subtrac-
tion approach were proposed and implemented. The enhanced
speech signals were obtained using either Dual Channel Non Linear
Spectral Subtraction ‘DC-NLSS’ or Dual-Channel Multi-Band Spec-
tral Subtraction ‘DC-MBSS’ algorithms which were successfully ap-
plied to the bilateral cochlear implant case.

Several phoneme recognition experiments were performed
using the French Lafon set made of 20 lists. Each list was composed
of seventeen 3-phoneme words pronounced by a single male talk-
er. Speech signals were corrupted by an additive babble noise at
different SNR levels and in the presence of single and multiple
noise interfering sources. A total of 50 normal hearing subjects
and 3 BCI implantees participated in the experiments.

Objective measures based on Perceptual Evaluation of Speech
Quality (PESQ) score and Itakura-Saito (IS) distance indicated that
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the performance of the DC-MBSS algorithm did not improve once
the number of bands exceeds 6. Then, subjective preference tests
revealed that dual-channel speech enhancement algorithms and
particularly DC-MBSS could yield substantial benefits in speech
intelligibility for BCI users, especially in the presence of only one
interfering noise source.
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a b s t r a c t

Coherence based methods have been successfully applied to dual-microphone noise reduction systems.
These techniques showed good results when noise signals on two microphones were uncorrelated, but
their performance decreased with correlated noises. It could be improved when the cross power spectral
density (CPSD) of received noises is available.

In this paper, an improved minimum tracking (IMT) technique for noise CPSD estimation was proposed.
The performance of this technique was compared to two other noise CPSD estimators based on voice
activity detection (VAD) and minimum tracking (MT) approaches. Evaluation was performed at four sig-
nal-to-noise ratios (SNR) and two interfering noise source configurations.

Results showed a superiority of the IMT approach in terms of low computing time and quality indicated
by the perceptual evaluation of speech quality (PESQ) scores. Then, subjective listening tests were carried
out with 50 normal hearing listeners using a specific bilateral cochlear implant (BCI) simulator and uti-
lizing the French Lafon database corrupted by additional babble noise. Results obtained with the pro-
posed technique were better than the two previously mentioned noise CPSD estimators.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In quiet listening conditions most cochlear implant (CI) users
can now achieve even more than 80% word recognition scores
regardless the used device [3]. However, speech recognition scores
are highly degraded in noisy environments [25]. Furthermore, as
mentioned by CI users, better and comfortable speech recognition
in noisy environments would be considered as one of the most sig-
nificant challenges [43]. Now, to improve speech intelligibility in
noisy environments, individuals with severe to profound hearing
loss could be implanted with two cochlear implants, one in each
ear. In fact, bilateral cochlear implantation provides patients the
advantages of bilateral information. Bilateral hearing permits a
better understanding of speech in quiet and also in noisy environ-
ments [5,20]. However, under more challenging listening condi-
tions, BCI recipients perform poorly, compared to normal-hearing
listeners [31].
All rights reserved.

ced Technologies for Medical
rmation Technologies (LETI),

x, Route Soukra km 3, B.P.W,
Numerous speech enhancement algorithms, divided into single-
microphone and multi-microphone methods, have been proposed
over the years to improve speech recognition in noisy background
conditions. Different single-microphone algorithms, originally
developed for normal hearing listeners, have been applied to CI
speech processing [16,19,32,45]. These algorithms were able to im-
prove CI users’ performance in noisy conditions, but they have lim-
itations in real environments. They introduce musical noise and
speech distortion [13]. Considerably larger benefits in speech intel-
ligibility could be obtained when resorting to multi-microphone
adaptive signal processing strategies, instead. Such strategies make
use of spatial information due to the relative position of the ema-
nating sounds; and they exploit situations in which target and
masker are spatially separated [15,21,39]. However, a larger num-
ber of microphones implies higher costs and an increase computa-
tional load. Dual-microphone approaches give a trade off between
multi and single microphone methods. They show some interest in
different promising applications like hands-free systems [2,28],
hearing aids [17,29] and cochlear implant [8, 14,].

Kallel et al. [8] proposed two speech enhancement algorithms
based on spectral subtraction principle for bilateral cochlear im-
plant users, specifically, dual-channel non linear spectral subtrac-
tion and dual-channel multi-band spectral subtraction
algorithms. Subjective preference tests revealed that dual-channel

http://dx.doi.org/10.1016/j.apacoust.2011.09.008
mailto:fathikallel@yahoo.fr
http://dx.doi.org/10.1016/j.apacoust.2011.09.008
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust
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speech enhancement algorithms and particularly dual-channel
multi-band spectral subtraction algorithm could yield substantial
benefits in speech intelligibility for BCI users. Performance of adap-
tive beamformer techniques with multi-microphone for BCI users
was also assessed by different studies [18,26,42].

Coherence-based methods are known as a subclass of dual-
microphone methods. They provide good results in uncorrelated
noise environments. The drawback of these methods is a decrease
in performance if captured noises are correlated. To handle this
problem, Le Bouquin-Jeannès et al. [34] proposed computing the
speech CPSD by subtracting the noise CPSD from the noisy speech
CPSD. The main difficulty of this improvement is to estimate the
CPSD of received noise signals.

Guérin et al. [2] proposed a noise CPSD estimation method as a
function of the posteriori SNR and the CPSD of the noisy signal
based on the premise that the noise CPSD can be estimated in all
frames. Zhang and Jia [44] proposed a decision based method for
noise CPSD estimation during speech pauses. They employed min-
imum statistics approach on each channel to estimate the noise
power spectral density (PSD) in that channel. They exploited the
estimated noise PSDs as a criterion to distinguish speech and pause
frames. Rahmani et al. [23] proposed another method to estimate
the noise CPSD without using a VAD or other conventional noise
estimation techniques. This method is based on the phase informa-
tion of the noisy speech signals. Different single-microphone algo-
rithms originally developed for noise PSD estimation were
extended to a dual-channel case for noise CPSD estimation. Sovka
et al. [33] proposed a single-microphone algorithm for noise PSD
estimation based on an iterative method. Rahmani et al. [22] pro-
posed an extension of this algorithm to a dual-microphone case for
noise CPSD estimation which is updated in all speech and non-
speech frames. In this iterative method, the noise CPSD is esti-
mated using the gain filter of the previous frame. Rahmani et al.
[24] proposed also an extension of a method introduced by Martin
[37,38] to a dual-microphone approach to estimate the noise CPSD.
In this method, the noise CPSD is estimated by tracking the mini-
mum of the noisy speech over a search window spanning a specific
number of frames.

The present study proposes a noise CPSD estimation method
using minimum tracking (MT) technique. In this method, a new
non-linear rule for tracking the minimum of the noisy speech CPSD
is applied by continuously averaging past spectral values. This ap-
proach differs from the method proposed by Rahmani et al. [24] in
which the noise CPSD estimation was dependent on the length of
the minimum search window. This proposed method is an exten-
sion of the single-microphone approach previously proposed by
Farsi [9] for noise PSD estimation to the dual-microphone case.

The current paper is outlined as follows. Section 2 provides theo-
retical overview of two-microphone speech enhancement system
and both VAD and MT based methods for noise CPSD estimation.
The proposed new noise CPSD estimation method is presented in
Section 3. Section 4 derives bilateral cochlear implant simulator prin-
ciple. Section 5 evaluates the experimental results and gives an overall
discussion of all obtained results. Section 6 concludes the paper.
2. Dual-microphone speech enhancement system

2.1. General consideration

The bilateral cochlear implant configuration is illustrated in
Fig. 1. Both left and right cochlear implants are fitted with one
microphone. The two received noisy speech signals (y1(n) and
y2(n)) are processed together with the proposed speech enhance-
ment algorithm (SEA) to generate enhanced speech signals (ŝ1(n)
and ŝ2(n)) which are then used in stimulation. The proposed
dual-channel SEA contains two major parts: Noise CPSD estimation
and enhanced speech signal computing using the cross power
spectral subtraction (CPSS) algorithm.

The picked up noisy speech signals could be expressed in time
domain as follows:

yiðkÞ ¼ siðkÞ þ diðkÞ i ¼ f1;2g ð1Þ

where ‘i’ is the microphone index, yi(k), si(k) and di(k) represent
respectively noisy speech, clean speech and noise signals and k is
the discrete time. Note that i = 1 corresponds to the signal picked
up by the microphone placed in the right ear and i = 2 corresponds
to the signal picked up by the microphone placed in the left ear.

The short-time discrete Fourier transform (STDFT) of the re-
ceived noisy signals is formulated as follows:

Yi;Nðf ;nÞ ¼ Si;Nðf ;nÞ þ Di;Nðf ;nÞ i ¼ f1;2g ð2Þ

where Yi,N(f, n), Si,N(f, n) and Di,N(f, n) represent respectively noisy
speech, clean speech and noise signals in the frequency domain, N
is the frame length, f e [0, N � 1] is a discrete variable enumerating
the frequency lines, and n is a time frame number. The parameter
‘N’ is left out for simplicity.

The coherence between the noisy speech signals y1(k) and y2(k),
noted CY1Y2(f, n), is computed according to Eq. (3) [35] and is situ-
ated between 0 and 1. A spectral modification filter (Hcpss) can be
computed as a function of this coherence function.

CY1Y2ðf ;nÞ ¼
jPY1Y2ðf ;nÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PY1Y1ðf ;nÞ � PY2Y2ðf ;nÞ
p ð3Þ

where PY1Y1(f, n), PY2Y2(f, n) and PY1Y2(f, n) are the PSD of Y1(f, n) and
Y2(f, n), and CPSD between Y1(f, n) and Y2(f, n), respectively.

As can be seen in Fig. 1, the computed filter Hcpss(f, n) is applied
on both noisy signals to obtain enhanced signals using an inverse
short-time discrete Fourier transform (ISTDFT).

The estimated CPSD and PSDs of noisy speech signals are com-
puted using a first order recursive filtering [35] as given by:

PYiYjðf ;nÞ ¼ k � PYiYjðf ;n� 1Þ þ ð1� kÞ � Yiðf ;nÞY�j ðf ;nÞ i; j ¼ f1;2g
ð4Þ

where ⁄ indicates the complex conjugate operator.
k is a smoothing parameter usually close to 1. This factor should

satisfy the two following constraints:

- For low values, the estimation takes into account speech short
term stationarity.

- For higher values, this parameter serves to minimize the esti-
mator variance.

Previous study [2] showed that for 16 kHz sampling frequency
with 256 samples per frame and a 50% overlap, the upper limit val-
ues of k is around 0.6–0.8. The value k = 0.7 is adopted for this
study.

In the coherence based methods, the frequency components of
the filter vary according to the amount of coherence between chan-
nels. It is assumed that the signal source is close to the micro-
phones; and as a result, the received speech signals are
correlated. It is also assumed that the distance between adjacent
microphones is not too small (in our case, due to the size of the hu-
man head, the distance inter-microphones was about 180 mm);
consequently, received noise signals can be uncorrelated. Thus,
higher values of coherence function correspond to an increased
level of desired speech in the signal. Nevertheless, low values of
the coherence function correspond to increased level of noise in
the signal. These properties led some researchers to use coherence
magnitude or a function of it as a spectral modification filter.
However, the assumption of uncorrelated received noise is often



Fig. 1. Block diagram of the considered dual-channel speech enhancement algorithm.
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violated in realistic conditions. The CPSS algorithm is considered
and the modification filter (Hcpss) is computed according to Eq.
(5) [34]:

Hcpssðf ;nÞ ¼
jPY1Y2ðf ;nÞj � jPD1D2ðf ;nÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PY1Y1ðf ;nÞPY2Y2ðf ;nÞ
p ð5Þ

where PD1D2(f, n) is the noise CPSD.
A precise estimation of the noise CPSD (|PD1D2(f, n)|) is crucial to

obtain an accurate estimation of the speech signal. Different tech-
niques are available to compute the noise CPSD like VAD and MT
approaches witch will be detailed in the next subsections.

2.2. Noise CPSD estimation using VAD approach

A technique for estimation of the noise CPSD is to employ a
voice activity detector (VAD). In a VAD-based technique, the esti-
mation is updated in non-speech (pause) regions and is stopped
during speech activity. This is expressed in:

P̂D1D2ðf ;nÞ
��� ���
¼

k0: P̂D1D2ðf ;n� 1Þ
��� ���þ ð1� k0Þ: Y1ðf ;nÞ:Y�2ðf ;nÞ

�� �� pause

P̂D1D2ðf ;n� 1Þ
��� ��� speech frame

8><>:
ð6Þ

where P̂D1D2ðf ; nÞ is the estimate of the noise CPSD and k0 is a
smoothing parameter and it was set to 0.9 in this work.

Either single or dual microphone VADs can be used to distin-
guish the speech/pause regions. In this study, we used a coher-
ence-based VAD [1,2] in which the speech/pause regions are
determined by taking a threshold on the coherence magnitude.

2.3. Noise CPSD estimation using minimum tracking (MT) approach

Martin [37] proposed a single-microphone noise estimation
method based on the observation of the noise PSD estimate witch
RY1Y2minðf ;nÞ ¼
a � RY1Y2minðf ;n� 1Þ þ 1�a

1�b ½RY1Y2ðf ; nÞ � b � RY1Y2ðf ;n� 1Þ� if RY1Y2minðf ;n� 1Þ < RY1Y2ðf ;nÞ
a � RY1Y2minðf ;n� 1Þ þ c½k � RY1Y2ðf ;nÞ � RY1Y2minðf ;n� 1Þ� otherwise

(
ð10Þ
can be obtained using minimum values of the smoothed power
estimate of the noisy speech signal. Thus, the use of minimum
statistics eliminates the problem of speech activity detection.
Rahmani et al. [24] extended this algorithm to the dual-micro-
phone case for noise CPSD estimation. First, a smoothed noisy
CPSD, RY1Y2(f, n), is computed according to:

RY1Y2ðf ;nÞ ¼ k0RY1Y2ðf ;n� 1Þ þ ð1� k0Þ � Y1ðf ; nÞY�2ðf ;nÞ ð7Þ

In the case of small signals (such as noise), RY1Y2(f, n) has low values.
The short-time noise CPSD is estimated by finding the local minima
(RY1Y2min(f, n)) of the smoothed noisy CPSD. These values are found
on the short intervals of ‘V’ frames as follows:

RY1Y2 minðf ;nÞ ¼ minfjRY1Y2ðf ;mÞj;n� V þ 1 < m < ng ð8Þ
where V is the length of the search window and is set to the max-
imum lifetime of the speech components.

Since the short-term minimum CPSD magnitude is always
smaller than the mean CPSD magnitude, the local minima of
|RY1Y2(f, n)| is a biased estimate of the CPSD magnitude that de-
creases the noise CPSD estimation accuracy. For an accurate noise
CPSD estimate, this bias must be compensated. For this reason, it is
multiplied by a value named the ‘bias compensation factor’, Bmin.
The estimated noise CPSD is computed according to:

P̂D1D2ðf ;nÞ ¼ RY1Y2 minðf ;nÞBmin ð9Þ
In the case of single-channel noise PSD estimation, Le Bouquin-Jeannès
et al. [34] used a constant bias compensation factor to correct the error
between the estimated and the true noise PSD. Martin [37] showed
that the bias compensation factor is a function of the search window
length, V, and the noise PSD estimate variance. Here, Bmin is set to be
a constant value [24] for a fixed search window length (Bmin = 2).

3. Proposed noise CPSD estimation using improved MT (IMT)
approach

In MT approach, the noise update was dependent on the length
of the minimum-search window. The main drawback of this meth-
od is that it takes more than the duration of the minimum-search
window to update the noise spectrum when the noise floor in-
creases abruptly. To overcome this problem, Farsi [9] proposed a
single-microphone non-linear rule for tracking the minimum of
the noisy speech by continuously averaging past spectral values.
In this algorithm, the update of local minimum was continuous
over time and did not depend on some fixed window length. We
proposed then an extension of this algorithm to the dual-micro-
phone case for noise CPSD estimation where the local minima
are computed as given by:
where a, b, c and k are constants experimentally determined by
Farsi [9] (a = 0.997, b = 0.8, c = 0.01, k = 0.9).

The block diagram of the noise reduction algorithm based on
IMT approach for noise CPSD estimation is shown in Fig. 2. In this
block diagram, the PSD and CPSD values are estimated using Eq.
(4), and the smoothed CPSD is then calculated using Eq. (7). In
the next step, the noise CPSD is computed using the minima track-
ing approach using both Eqs. (9) and (10). The estimated noise
CPSD is exploited to calculate the noise reduction filter as in Eq.
(5). Finally, this filter is applied to the noisy speech signals of both



Fig. 2. Block diagram of the considered noise CPSD estimator. y1(k) and y2(k) are the input noisy signals. ŝ1ðkÞ and ŝ2ðkÞ are the output enhanced signals.
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left and right channels. The modified spectrums (Ŝ1(f, n) and Ŝ2(f,
n)) are used to reconstruct the enhanced speech time signals by
using the ISTDFT in conjunction with the overlap and add method.

Algorithm 1 indicates the different steps used to compute the
enhanced speech signals with the proposed noise CPSD estimation
method. As can be seen, the initialization of recursive items is per-
formed in the first frame. Practically, it is assumed that the first
frame contains only noise, thus the CPSD of noise is set to the CPSD
of the noisy signals, and the modification filter is set to zero (to
attenuate all noise).

Algorithm 1. The algorithm of the proposed method for noise
CPSD estimator is given below. Recommended values for smooth-
ing parameters are: k = 0.7, k0 = 0.9, a = 0.997, b = 0.8, c = 0.01, and
Bmin = 2 [9].
First frame (n = 1)
PY1Y1(f, 1) = Y1(f, 1)�Y1(f, 1)⁄

PY2Y2(f, 1) = Y2(f, 1)�Y2(f, 1)⁄

PY1Y2(f, 1) = Y1(f, 1)�Y2(f, 1)⁄

RY1Y2(f, 1) = Y1(f, 1)�Y2(f, 1)⁄

RY1Y2min(f, 1) = RY1Y2(f, 1)
Hcpss(f, 1) = 0

Other frames (n > 1)
PY1Y1(f, n) = k�PY1Y1(f, n � 1) + (1 � k)�Y1(f, n)Y1(f, n)⁄

PY2Y2(f, n) = k�PY2Y2(f, n � 1) + (1 � k)�Y2(f, n)Y2(f, n)⁄

PY1Y2(f, n) = k�PY1Y2(f, n � 1) + (1 � k)�Y1(f, n)Y2(f, n)⁄

RY1Y2(f, n) = k0�RY1Y2(f, n � 1) + (1 � k0)�Y1(f, n)Y2(f, n)⁄

Non-linear rule for local minima (RY1Y2min(f, n)) computing
according to Eq. (10)

P̂D1D2ðf ;nÞ ¼ Bmin � RY1Y2 minðf ;nÞ
Hcpssðf ;nÞ ¼ jPY1Y2ðf ;nÞj�jP̂D1D2ðf ;nÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PY1Y1ðf ;nÞ�PY2Y2ðf ;nÞ
p

Ŝiðf ;nÞ ¼ Yiðf ;nÞ � Hcpssðf ;nÞ i ¼ f1;2g
4. Bilateral cochlear implant simulator

In order to investigate the behaviour of the above speech
enhancement algorithms, in the case of cochlear implant, speech
signals were processed and modified according to a specific co-
chlear implant simulator leading to vocoded speech signals.
Fig. 3 gives the block diagram of the considered CI simulator. The
conception of this simulator was based on the French 12-channel
Neurelec Digisonic SP cochlear implant. According to several
authors [30], these simulations provide results consistent with
the outcome of cochlear implants.

The enhanced speech signal, sampled at 16 kHz, was divided
into 50% overlapping frames by the application of a Hanning win-
dow function and then analysed using the STDFT. The length of the
window (frame) is set to L = 128 samples. The processed speech
signal is passed through a bank of 12 band-pass filters. The band-
width of the filters matched the frequency range corresponding to
the cochlear segment excited by electrical stimulation. It can be
noticed that cochlear tonotopy is organized according to psychoa-
coustic evidence, the lin-log scale (linear in low frequencies and
logarithmic in high frequencies) such as the bark scale. In this
work, cut-off frequencies between the different filters were chosen
in order to respect this scale.

Mapping between the bark scale and the frequency scale is non-
linear. An approximate analytical expression for describing the
conversion from linear frequency f (in Hz), into the critical band
number b (in barks) is given by the following equation [10]:

bðf Þ ¼ ArgHyperbolic
f � 20

600

� �
ð11Þ

The number of spectrum lines (Nz), the starting line (nstartz), the
center frequency (fmid) and low and high cut-off frequencies for
each frequency band are summarized in Table 1.

Filter outputs are then processed using the following power
estimation equation:

EðzÞ ¼
Pf¼nstartzþNz�1

f¼nstartz
eðf Þ

Nz
; z ¼ 1 : 12 ð12Þ

where E(z) is the power of the considered band ‘z’ and e(f) is the
power of the spectral line ‘f’.

The output of this analysis stage is a vector of power values for
each data frame. According to the advance combination encoder
(ACE) strategy [6] and for each frame, only the first 8 channels pre-
senting the most important power levels were used. The other
channels were set to zero.

Each frequency band ‘z’ was weighted by a Hanning window
‘w(l)’ and the energy value ‘E(z)’ yielded a modified Hanning win-
dow called ‘‘the envelope: Env(z, l)’’, according to:



Fig. 3. Block diagram of the adopted CI simulator.

Table 1
Spectral lines attributed to the frequency bands and their associated center frequencies in Hz.

Analysis Frequency
band ‘z’

1 2 3 4 5 6 7 8 9 10 11 12

Left and right channels
Number of lines Nz 1 1 2 2 2 3 3 4 5 6 8 9
Starting line nstartz 3 4 5 7 9 11 14 17 21 26 32 40
Center freqs fmid (Hz) 375 500 687 937 1187 1500 1875 2312 2875 3562 4437 5500
Cut-off frequencies

(Hz)
300–
448

448–
616

616–
810

810–
1041

1041–
1318

1318–
1654

1654–
2065

2065–
2568

2568–
3187

3187–
3950

3950–
4892

4892–
6055

260 F. Kallel et al. / Applied Acoustics 73 (2012) 256–264
Envðz; lÞ ¼ EðzÞ �wðlÞ; z ¼ 1 : 12; l ¼ 1 : L ð13Þ
To prevent sharp variations, a further smoothed envelop was ob-
tained after a low pass filtering (cut-off at 150 Hz). A white noise
was shaped to each frequency band by a 3rd order Butterworth fil-
ter having the same bandwidth than the frequency band, and
yielded narrow band noise signals. For each frequency band, a
vocoded speech signal was synthesized by modulating the filtered
narrow band noise signal with its corresponding smoothed envelop.
Finally, all synthesized vocoded signals coming from the different
channels were summed up and the output was adjusted to have
the same long-term root mean square energy as the input speech
signal (70 dB).
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Fig. 4. Performance of the noise CPSD estimators using MT, IMT and VAD methods.
5. Evaluation and results

In this section, we evaluate the performance of previously de-
scribed approaches (VAD, MT and IMT) for noise CPSD estimation.
A preliminary comparative study is proposed to show the useful-
ness of the proposed approache in terms of better noise CPSD esti-
mation and processing time. Objective measurements and
subjective listening tests were then considered. Enhanced speech
signals are computed according to the noise reduction filter given
by Eq. (5) and using in each case a noise CPSD estimator.
5.1. Preliminary comparative study

Fig. 4 shows the variation of the noise CPSD as a function of the
frequency. Noise CPSD was estimated in the presence of speech
signal and is obtained by taking the average over all frames. A bab-
ble noise with three interfering noise sources was considered. The
SNR of the considered noisy speech signal was fixed at 0 dB. True
noise CPSD is depicted as a solid line. The estimated noise CPSD
is sketched, in dashed-dot line for VAD method, in dashed line
for MT method and in dotted line for the proposed IMT method.
The length of the search window was fixed to 30 frames (0.48 s)
for the MT method.

As it can be noticed, the IMT method performed better than MT
and VAD methods and particularly in mid range frequencies
(1500 Hz–3500 Hz). In fact, the noise CPSD estimated with the
IMT method fit well the true noise CPSD.

These methods were also compared in term of processing time
using AMD 2.4 GHz clock processor machine and 1Go of RAM un-
der windows operating system. Different search windows length
(V = 10, 20, 30, 40, 50 and 60 frames) for the MT algorithm were
considered. Results are reported in Table 2.



Table 2
Processing time for MT, IMT and VAD methods.

Method Length of search window (frames) Processing time (second)

MT 10 1.04
20 1.35
30 1.55
40 1.82
50 2.06
60 2.32

VAD – 1.22
IMT – 1.13
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Table 2 shows that the processing time for noise CPSD estima-
tion obtained by the MT approach was increased with the length
of the search window. The IMT approach gave a small processing
time, compared to MT and VAD methods.

5.2. Intelligibility evaluation

5.2.1. Phonetic material
Phonetic material was the French Lafon set [12] which contains

twenty lists, each one composed of seventeen 3-phoneme words
pronounced by a single male talker. This set is commonly used
for intelligibility assessment in French. As indicated above, sound
level was calibrated to 70 dB SPL which is a comfortable hearing le-
vel. All theses lists were processed in the anechoic room of the ORL
department of the Edouard-Herriot Hospital of Lyon-France with
an additional babble noise. This room is fitted with six loudspeak-
ers (LS) and a Kemar (Knowles Electronic Manikin for Electronic
Research). SNR was varied from �3 dB to 6 dB with 3 dB steps.

The experimental setup is presented in Fig. 5. A CD player (PHI-
LIPS-CD723) was connected to an audiometer (MADSEN-Orbiter
922) for calibration and intensity level adjustment. The target
speech signal was always placed directly in front of the Kemar
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Fig. 5. Experimental setup (Anechoic room). LS3 = speech signal, LS2, LS4 and
LS5 = noise sources, LS1 and LS6 were not used.
head at 0� azimuth (LS3). Subjects were tested with either one or
three interferers. In the single interferer condition, a single speech
babble noise source was presented from the right side of the lis-
tener (LS5). In the multiple interferers condition, three interfering
noise sources were placed asymmetrically either across both hemi-
fields (�60�, 60�, and 90� corresponding respectively to LS2, LS4 and
LS5). Signal was recorded, processed and then stored before its
delivery to the subjects.

5.2.2. Objective evaluation
The performance of the different described noise CPSD estima-

tors was evaluated using the PESQ (perceptual evaluation of speech
quality) score which range from 0.5 (for the worst case) to 4.5 (for
the best case) according to the ITU-T Recommendation P. 862 stan-
dard [11]. The results were reported for four SNRs and two inter-
fering noise source configurations. From Table 3, it is clear that
in most cases, PESQ scores obtained with minimum tracking ap-
proaches were higher than those of VAD based method. This can
be explained by the fact that VAD did not take into account the
behaviour of the noise during the speech frames, while the mini-
mum tracking approaches (MT and IMT) estimated the noise CPSD
in sub-bands during speech and non-speech frames.

It can be also noted that PESQ values obtained with IMT ap-
proach were higher than those for the MT. Furthermore, the worse
PESQ scores were obtained at lower SNR levels and with multiple
interfering noise sources (second configuration).

5.2.3. Subjective evaluations
In this section, we investigate the potential benefits of process-

ing the noisy speech signal with the CPSS algorithm using three
different noise CPSD estimators. Therefore, comprehensive pho-
neme recognition tests were conducted in BCI simulation.

5.2.3.1. Listeners. Performance evaluation was carried out with a
population of fifty normal hearing subjects. Their audiograms were
tested in the ORL department prior to the experiment. Normal
hearing subjects age ranged from 20 to 35 years. All participants
were native French speakers. Tests were performed in the anechoic
room of the Edouard-Herriot hospital of Lyon.

5.2.3.2. Listening session. After listening to each word, subjects were
instructed to repeat what they heard. Before each condition, sub-
jects were given a practice session containing a set of ten random
words processed according to that condition. None of the words
used during the test was used in the practice session. No score
was calculated for these practice sets. To minimize any order effect
in the experience, such as learning or fatigue, all conditions were
randomized among subjects. Different sets of lists were used in
each condition. At the end of each listening session, the responses
of each individual were collected, stored and scored off-line with
the number of correctly identified phonemes. All phonemes were
scored. The percentage of correctly repeated phonemes was then
calculated (for two Lafon’s lists, corresponding to 102 phonemes).
Experiments were performed using a PC equipped with a conexant
AC-link audio soundcard.

Subjective evaluation tests were elaborated considering noisy
speech signal (non-processed signal) taken as a reference condition
and three SEAs based on CPSS using VAD, MT and IMT approaches
for noise CPSD estimation. Speech stimuli were processed offline
with MATLAB software. Each subject listened to a total of 64 lists
(8 lists/condition � 4 SNRs � 2 noise interfering configurations).
Lists were played on the CD player in a random order. For each con-
dition, the subjects listened bilaterally to the words using a closed
professional ‘Sennheiser’ HD250 linear headphones. Acoustic level
was calibrated at 70 dB SPL.



Table 3
PESQ scores of noisy and enhanced speech signals.

Method PESQ

Single interfering noise source Three interfering noise sources

SNR = �3 dB SNR = 0 dB SNR = 3 dB SNR = 6 dB SNR = �3 dB SNR = 0 dB SNR = 3 dB SNR = 6 dB

Noisy signal 1.23 1.62 1.98 2.08 1.13 1.36 1.52 1.94
VAD 1.32 1.84 2.26 2.71 1.06 1.70 2.09 2.31
MT 1.86 2.13 2.44 2.62 1.52 1.96 2.28 2.48
IMT 2.04 2.31 2.58 2.79 1.77 2.04 2.40 2.62
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Fig. 6. Recognition score (mean ± standard error) in% with noisy speech, CPSS based SEA using VAD, MT and IMT noise CPSD estimator for two Babble noise interfering source
configurations.
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5.2.3.3. Results. Performance of CPSS speech enhancement algo-
rithm with VAD, MT and IMT noise CPSD estimation methods were
carried out through listening tests. Intelligibility scores were de-
rived from the percentage of correctly repeated phonemes per con-
dition. Effects were studied through Chi2 tests with the following
parameters:

- Repeated measures (the same subjects underwent all the
situations)

- Dependant variable: the recognition score in percent
- Three effects:
� SEA (Noisy, VAD, MT and IMT)
� Interfering noise configuration (‘90�’ and ‘�60� 60� 90�’)
� SNR (�3 to 6 dB with 3 dB step).

This last effect was taken as random; the first two effects were
fixed. This model, with both fixed and random effects, is known as
mixed-effect model, and is a standard for data analysis [41]. Anal-
ysis was carried out using the program lmer of the lme4 package
[7] of the statistical programming language and software environ-
ment R [36]. Results revealed main effects of SEA (Chi2[3] = 1244,
p < 0.0001), of SNR (Chi2[3] = 6461, p < 0.0001) and of interfering
noise configuration (Chi2[1] = 121, p < 0.0001). In addition, there
was a significant interaction between the SEA and the SNR
(Chi2[9] = 77, p < 0.0001). No significant interaction was seen be-
tween interfering noise configuration and SEA (Chi2[3] = 8,
p = 0.03) and between interfering noise configuration and SNR
(Chi2[3] = 8, p = 0.2).

Fig. 6 shows mean recognition scores (across all subjects) in the
presence of speech babble noise, as a function of the SNR for both
considered noise interfering configurations. It is clear that perfor-
mance of CPSS based SEA is variable with the considered approach
for noise CPSD estimation. An overall superiority of the proposed
technique compared to the others is observed.

Post-hoc comparisons were run to assess significant differences.
We used the Tukey HSD test via general linear hypothesis test ‘glht’
function from multiple comparison ‘multcomp’ package of R. Results
revealed that phoneme recognition scores with VAD approach (par-
ticularly at SNRs 6, 3 and 0 dB) were significantly better than the
unprocessed noisy speech signal (p < 0.001), but no significant
improvement was seen at �3 dB (p = 0.08). However, best recogni-
tion scores were obtained with MT and IMT at all SNRs (p < 0.001).
Results indicated also that phoneme recognition scores with MT
and IMT were significantly better than those obtained with VAD at
all SNRs (p < 0.001). Furthermore, it can be noted that IMT per-
formed significantly better than MT at 3, 0 and �3 dB SNRs
(p < 0.001). No significant improvement was seen at 6 dB (p = 0.142).

5.3. Discussion

In the present study, benefits of CPSS SEA using three noise
CPSD estimators were assessed. The performance of VAD and MT
approaches were compared to the IMT approach. Simulation re-
sults showed lower computing time and a better quality in terms
of PESQ scores for the enhanced speech signal when the proposed
noise CPSD estimator was considered. Moreover, subjective com-
parative study based on the phoneme recognition scores was also
performed with fifty normal-hearing subjects. Globally, experi-
mental results indicated an overall superiority of the IMT method.

5.3.1. Speech enhancement algorithms vs SNR levels
Results showed a variable effect of SEAs when SNRs were de-

creased from 6 dB to �3 dB. In fact, the average improvements in
phoneme’s recognition scores were 5.2%, 13.6% and 20.1% obtained
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respectively with VAD, MT and IMT approaches. Results also dem-
onstrated that the improvement was fairly high at 6, 3 and 0 dB,
but was less at �3 dB SNR. These results indicate the superiority
of minimum tracking approaches for noise CPSD estimation, and
IMT was better than MT and VAD.

Compared to the mean recognition scores obtained with multi-
band spectral subtraction algorithm proposed by Kallel et al. [8], an
average improvements of 3%, 4.5%, 8.5% and 6.5% were respectively
observed at 6 dB, 3 dB, 0 dB and �3 dB when the CPSS SEA were
considered using the IMT approach for noise CPSD estimation.
5.3.2. Speech enhancement algorithms vs interfering noise source
configurations

As shown in Fig. 6, SEAs performances were significantly de-
graded when the number of interfering noise sources was in-
creased from one to three. In the presence of only one interfering
noise source, the average improvement was 6% with VAD, 13.5%
with MT and 24.6% with IMT. In the presence of three interfering
noise sources, results indicated an average improvement of only
4.5% with VAD, 10.7% with MT and 21.2% with IMT.

This observation may be due to the fact that, in the binaural
hearing case, when both CI devices are available, BCI listeners
could benefit from the head-shadow effect which occurs mainly
when speech and noise are spatially separated [27,40]. When only
one interfering noise source was placed on the right of the listener
(+90�), a better SNR was obtained at the left ear compared to the
right one. Therefore, the individual listener will be able to selec-
tively focus on the left ear placed contralateral to the competing
noise source to improve phoneme recognition scores. Whereas
for multiple interfering noise sources, the speech signals coming
to the right and left sides of the listener will be disproportionally
attenuated depending on the noise source configuration.

The implementation of the proposed dual-channel speech
enhancement strategy requires access to a single digital signal pro-
cessor driving both cochlear implants. In this case, signals coming
from the left and right sides need to be captured synchronously
and be further processed together. As wireless communication of
speech signals is quickly becoming possible between the two sides,
it may be advantageous to have the two devices in a bilateral fit-
ting communicate with each other. An intelligent wireless signal
transmission scheme could also be designed that would allow a
signal exchange between the two implant processors.
6. Conclusion

This study investigated the efficiency of CPSS based two-micro-
phone SEA applied to BCI case in simulation. The noise CPSD esti-
mation was an important component. An advanced approach for
noise CPSD estimation, based on improved minimum tracking
technique, was presented. Tests were performed using the French
Lafon set based on phoneme recognition. Speech babble was the
interfering noise signal. Fifty normal hearing subjects participated
in the experiment. Performances of noise CPSD estimators were
evaluated to compare VAD and MT approaches in single and three
interfering noise sources at different SNRs. Objective measures
based on PESQ scores indicated a significant improvement in
speech quality when the IMT approach was considered. A mini-
mum computing time was also observed. Subjective recognition
tests revealed that CPSS algorithm can yield substantial benefits
in speech intelligibility for BCI in simulation when the IMT ap-
proach for noise CPSD estimation is considered, especially in the
presence of only one interfering noise source.
Acknowledgments

This research work was supported by the French–Tunisian
cooperation project ‘PHC-Utique’ managed by CMCU (2008–
2011). We appreciate the efforts of all the subjects who partici-
pated in the listening sessions. We also would like to thank the co-
chlear implantation center in the Edouard Herriot hospital in Lyon-
France for the technical support and especially professors Lionel
Collet, Hung Tai-Van and Eric Truy for their encouragements.
References

[1] A. Guérin, Rehaussement de la parole pour les communications mains-libres:
Réduction de bruit et annulation d’́echo non linéaire, PhD thesis, Université de
Rennes 1, France; 2002.

[2] Guérin A, Le Bouquin-Jeannès R, Faucon G. A two-sensor noise reduction
system: applications for hands-free car kit. EURASIP J Appl Signal Process
2003:1125–34.

[3] Spahr A, Dorman M. Performance of patients fit with advanced bionics CII and
nucleus 3G cochlear implant devices. Arch Otolaryngol Head Neck Surg
2004;130:624–8.

[5] Dunn CC, Tyler RS, Oakley S, Gantz BJ, Noble1 W. Bilateral and unilateral
cochlear implant users compared on speech perception in noise. Ear Hear
2010;31:296–8.

[6] Cochlear Corporation. ACE and CIS DSP strategies. Software requirements
specification. Lane Cove, New South Wales, Australia; 2002.

[7] Bates D. lme4: linear mixed-effects models using S4 classes. R package version
0.99875-8; 2007.

[8] Kallel F, Frikha M, Ghorbel M, Ben Hamida A, Berger-Vachon C. Dual-channel
spectral subtraction algorithms based speech enhancement dedicated to a
bilateral cochlear implant. Appl Acoust 2012;73:12–20.

[9] Farsi H. Improvement of minimum tracking in minimum statistics noise
estimation method. Signal Process Int J 2010;4:17–22.

[10] Tranmüller H. Analytical expression for the tonotopic sensory scale. J Acoust
Soc Am 1990;85:97–100.

[11] ITU-T Recommendation P.862. Perceptual evaluation of speech quality (PESQ):
an objective method for end-to-end speech quality assessment of narrowband
telephone networks and speech codecs; 2001.

[12] Lafon JC. Le test phonétique et la mesure de l’audition. In: Eindhoven, editors.
Centrex; 1964.

[13] Deller JR, Hansen JHL, Proakis JG. Discrete-time processing of speech signals.
2nd ed. New York: IEEE Press; 2000.

[14] Wouters J, Vanden Berghe J. Speech recognition in noise for cochlear
implantees with a two microphone monaural adaptive noise reduction
system. Ear Hear 2001;22:420–30.

[15] Chung K, Zeng FG, Acker KN. Effects of directional microphone and adaptive
multichannel noise reduction algorithm on cochlear implant performance. J
Acoust Soc Am 2006;120:2216–27.

[16] Kasturi K, Loizou PC. Use of S-shaped input-output functions for noise
suppression in cochlear implants. Ear Hear 2007;28:402–11.

[17] Reindl K, Zheng Y, Kellermann W. Analysis of two generic wiener filtering
concepts for binaural speech enhancement in hearing aids. In: 18th European
signal processing conference; 2010. p. 989–93.

[18] Kokkinakis K, Loizou PC. Multi-microphone adaptive noise reduction strategies
for coordinated stimulation in bilateral cochlear implant devices. J Acoust Soc
Am 2010;127:3136–44.

[19] Yang LP, Fu QJ. Spectral subtraction-based speech enhancement for cochlear
implant patients in background noise. J Acoust Soc Am 2005;117:1001–4.

[20] Monica LH, Ruth YL. The benefit of binaural hearing in a cocktail party: effect
of location and type of interferer. J Acoust Soc Am 2004;115:833–43.

[21] Kompis M, Dillier N. Noise reduction for hearing aids: combining directional
microphones with an adaptive beamformer. J Acoust Soc Am 1994;96:1910–3.

[22] Rahmani M, Akbari A, Beghdad A. An iterative noise cross-PSD estimation for
two-microphone speech enhancement. J Appl Acoust 2009;70:514–21.

[23] Rahmani M, Akbari A, Ayad B, Lithgow B. Noise cross PSD estimation using
phase information in diffuse noise field. J Signal Process 2009;89:703–9.

[24] Rahmani M, Akbari A, Ayad B, Derakhshan N. A noise cross PSD estimator for
dual-microphone speech enhancement based on minimum statistics. J
Zhejiang Univ Sci A 2009;10:805–9.

[25] Qin MK, Oxenham AJ. Effects of simulated cochlear implant processing on
speech reception in fluctuating maskers. J Acoust Soc Am 2003;114:446–54.

[26] Kompis M, Bettler M, Vischer M, Senn P, Häusler R. Bilateral cochlear
implantation and directional multi-microphone systems. In: International
cochlear implant conference 1273; 2004. p. 447–50.

[27] Hawley ML, Litovsky RY. The benefit of binaural hearing in a cocktail party:
effect of location and type of interferer. J Acoust Soc Am 2004;115:833–43.

[28] Rahmani M, Yousefian N, Akbari A. An energy-based speech enhancement
technique for hands-free communication. Electron Lett 2009;45:85–6. IEE
Publishing.

[29] Yousefian N, Kokkinakis K, Loizou PC. A coherence-based algorithm for noise
reduction in dual-microphone applications. In: European signal processing
conference 1904–1908; 2010.



264 F. Kallel et al. / Applied Acoustics 73 (2012) 256–264
[30] Whitmal NA, Poissant SF, Freyman RL, Helfer KS. Speech intelligibility in
cochlear implant simulations: effects of carrier type, interfering noise, and
subject experience. J Acoust Soc Am 2007;122:2376–88.

[31] Loizou PC, Hu Y, Litovsky P, Yu G, Peters R, Lake J, et al. Speech recognition by
bilateral cochlear implant users in a cocktail party setting. J Acoust Soc Am
2009;125:372–83.

[32] Loizou PC, Lobo A, Hu Y. Subspace algorithms for noise reduction in cochlear
implants. J Acoust Soc Am 2005;118:2791–3.

[33] Sovka P, Pollak P, Kybic J. Extended spectral subtraction. In: Proceeding of
European signal processing conference, EUSIPCO-96. Trieste, Italia; 1996.

[34] Le Bouquin-Jeannès R, Azirani AA, Faucon G. Enhancement of speech degraded
by coherent and incoherent noise using a cross-spectral estimator. IEEE Trans
Speech Audio Process 1997;5:484–7.

[35] Le Bouquin-Jeannès R, Faucon G. Using the coherence function for noise
reduction. IEE Proc 1992;139:276–80.

[36] R Development Core Team, R: A language and environment for statistical
computing, R foundation for statistical computing. Vienna, Austria; 2007. ISBN
3-900051-07-0. <http://www.R-project.org>.

[37] Martin R. Noise power spectral density estimation based on optimal
smoothing and minimum statistics. IEEE Trans Speech Audio Process
2001;9:504–12.
[38] Martin R. Spectral subtraction based on minimum statistics. In: Signal
processing conf. EUSIPCO 1182–1185; 1994.

[39] Van Hoesel RJM, Clark G. Evaluation of a portable two microphone adaptive
beamforming speech processor with cochlear implant patients. J Acoust Soc
Am 1995;97:2498–503.

[40] Litovsky RY, Parkinson A, Arcaroli J. Spatial hearing and speech intelligibility in
bilateral cochlear implant users. Ear Hear 2009;30:419–31.

[41] Baayen RH. Analyzing linguistic data. A practical introduction to
statistics. Cambridge, UK: Cambridge University Press; 2008.

[42] Hamacher V, Doering W, Mauer G, Fleischmann H, Hennecke J. Evaluation of
noise reduction systems for cochlear implant users in different acoustic
environments. Am J Otol 1997;18:S46–9.

[43] Noble W, Tyler R, Dunn C, Bhullar N. Hearing handicap ratings among different
profiles of adult CI users. Ear Hear 2008;29:112–20.

[44] Zhang X, Jia Y. A soft decision based noise cross power spectral density
estimation for two-microphone speech enhancement systems. In: IEEE int conf
on acoustics, speech, and signal processing; 2005. p. 813–816.

[45] Hu Y, Loizou P, Li N, Kasturi K. Use of a sigmoidal-shaped function for noise
attenuation in cochlear implants. J Acoust Soc Am 2007;122:128–34.

http://www.R-project.org


Applied Acoustics xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Applied Acoustics

journal homepage: www.elsevier .com/locate /apacoust
Influence of a shift in frequency distribution and analysis rate on phoneme
intelligibility in noisy environments for simulated bilateral cochlear implants

Fathi Kallel a,b,⇑, Rafael Laboissiere b, Ahmed Ben Hamida a, Christian Berger-Vachon b

a Research Unit in Advanced Technologies for Medicine and Signals ‘ATMS’, National Engineering School of Sfax, University of Sfax, Route Soukra, km 3, Sfax, BPW 3038, Tunisia
b PACS Team, INSERM Unit 1028: ‘‘Cognition and Brain Dynamics’’, Lyon Neurosciences Research Centre, EPU-ISTIL, Claude Bernard University, Boulevard du 11 Novembre 1918,
69622 Villeurbanne, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 December 2010
Received in revised form 12 May 2012
Accepted 28 May 2012
Available online xxxx

Keywords:
Bilateral CI stimulation
Analysis rate
Vocoder
Hearing in noise
Asymmetrical stimulation
0003-682X/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.apacoust.2012.05.014

⇑ Corresponding author at: Research Unit in Advanc
and Signals ‘ATMS’, National Engineering School of S
Soukra, km 3, Sfax, BPW 3038, Tunisia. Tel.: +216 74
95.

E-mail address: fathikallel@yahoo.fr (F. Kallel).

Please cite this article in press as: Kallel F et al.
ments for simulated bilateral cochlear implants
A model was developed to simulate acoustically sound perception through a cochlear implant (CI), in
order to evaluate the effects of a spectral shift and analysis rate on speech recognition in quiet and noise.
In the current study, we considered two analysis rates, 250 Hz and 500 Hz, and two CI modes: Symmetric
Bilateral Cochlear Implant (SBCI) and Shifted Bilateral Cochlear Implant (ShBCI). Processing and coding
strategies used in this model were adapted from the Digisonic SP CI, manufactured by Neurelec.

Intelligibility of speech signals processed to simulate different analysis rates and CI modes were
assessed by a group of fifty normal-hearing subjects. The analysis rate was simulated by varying the over-
lap between successive analysis frames using a narrow band vocoder. With the SBCI mode, both ears
were stimulated with the same signal (the same frequency filters were used). With the ShBCI mode,
the filters were shifted in frequency (between the two ears). All the conditions were tested in quiet
and in noisy environment with three different Signals to Noise Ratios (SNR). The database testing proce-
dure used in this experimentation involved 3-phoneme words selected from the French Lafon’s lists.
Speech signals were corrupted by addition of speech multi-talker babble noise.

Results showed a significant effect of CI mode, of analysis rate and of SNR. The analysis rate effect was
small in quiet and significant in noisy environments. The 500 Hz analysis rate led to better performances
than the 250 Hz. Higher performances were also observed with the ShBCI mode in noisy environments.
Results were mainly consistent with findings obtained from previous cochlear implant studies which
suggest that CI users may perform better with a shifted bilateral stimulation in noisy environments,
and with a higher analysis rate.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Cochlear implants (CI) are electronic devices introduced surgi-
cally into the inner ear that directly stimulate the auditory nerve
in response to sounds. They are designed for severely, profoundly,
or totally hearing-impaired patients who get little or no benefit
from classical hearing aids [5,20]. Three main parts can be distin-
guished in such auditory prosthesis: an external part containing
the speech processing analyser which extracts most essential
parameters, a transmission module and an internal implanted
stimulator [20].

Several speech processing algorithms were elaborated by re-
search groups to extract essential parameters for the cochlea’s
ll rights reserved.
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electric stimulation [20]. This electric stimulation of nerve cells’
leads induces a nervous message, transmitted to hearing areas in
the brain and lead to subjective interpretation.

The external sound processor decomposes the input audio sig-
nal into different frequency bands and delivers energy, in each fre-
quency band, to the appropriate electrode in the cochlea [18]. The
influence of the filters has been investigated in several studies such
as Kasturi and Loizou [16], Fourakis et al. [12]; they advocated the
placement of more filters in the F1/F2 region in order to achieve a
better representation of the first two-formant. Filter-spacing,
which included log, mel (Fant, 1973) and critical-band [42] spac-
ing, has been widely investigated for the recognition of vowels. Re-
sults indicated that many subjects performed better using the
critical-band spacing compared to the log spacing. Performance
using the mel frequency spacing was lower compared to the two
other frequency spacings. The authors attributed this result to
the number of frequency bands situated in the F1 and F2 range.
When cochlear tonotopy is organized according to a classical
lin-log scale (linear in the low frequencies and log in the high
distribution and analysis rate on phoneme intelligibility in noisy environ-
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frequencies), named also bark scale, filter cut-off frequencies were
chosen in order to respect this scale. Tranmüller [32] made a re-
view of the existing functions describing the tonotopic sensory
scale.

The envelope information in each channel is transmitted to the
individual electrodes. The acoustic amplitude envelope is used to
modulate the electric current delivered by the implanted elec-
trodes. The transmission of acoustic envelope cues is linked to
the spectral analysis and to the stimulation rate of the CI device.
Better recognition performance could be obtained with high
pulse-rates which better code the speech temporal modulation.
Also, higher stimulation rates may increase the stochastic response
properties of the activated neurons [15]. Despite the theoretical
advantages of higher stimulation rates, the outcomes of several
studies did not always back this idea [34].

Presently, many researchers are working towards improving
perceived speech quality for hearing impaired people. Technology
authorises many signal processing strategies in multichannel CIs,
and can offer efficient speech understanding [3,8]. Consequently,
unilateral cochlear implantation is widely accepted and offers an
effective way to restore speech understanding mostly in quiet con-
ditions [13,41]. However, patients encounter difficulties in noisy
environments [37,27,25,11].

Bilateral cochlear implantation has been shown to support im-
proved sound localization and lead to better speech perception,
particularly in noisy listening conditions. In fact, bilateral hearing
offers the opportunity to listen with the ear that has the most
favorable signal-to-noise ratio (SNR). Consequently, this is impor-
tant when speech and noise come from different directions; it uses
the head shadow effect and/or the phase difference. Binaural
advantage is the ability to combine sounds coming from the two
ears which is better than one ear alone [17,26]. For totally deaf pa-
tients, it is possible to achieve a binaural stimulation through bilat-
eral cochlear implantation [9]. But, [41] noted that some bilateral
listeners ‘‘may not have sufficient residual auditory capacity in
the central nervous system to make use of binaural cues.’’ Some
investigations showed that bilateral CI was beneficial to some indi-
viduals in some conditions [7,35]. Several practical studies have
shown an advantage for bilateral cochlear implantation in
speech-recognition tasks conducted in controlled laboratory set-
tings [33,30]. A comparison of bilateral CI scores and unilateral CI
scores in quiet indicated a significant difference between the two
situations, the bilateral CI group scoring 19% higher for sentences
and 24% higher for words. Laszig et al. [22] examined the benefits
of bilateral cochlear implantation in terms of speech recognition in
quiet and in noise for hearing-impaired adults using the Nucleus
24 cochlear implant. In noise, better results were observed for
the ear closest to the speech source, compared to the other ear near
the noise source. Ricketts et al. [27] compared speech recognition,
in quiet and at +5, +10, +15, and +20 dB SNRs using five uncorre-
lated noise sources for bilateral and unilateral modes, in postlin-
gually-deafened adults bilaterally implanted. Results revealed a
good bilateral advantage in low SNR conditions. Dunn et al. [6] also
compared speech performance in noise with patients wearing
bilateral and unilateral CIs. The bilateral CI group showed signifi-
cantly improved speech perception in noise, compared with unilat-
eral CI subjects.

Few studies have examined the effects on speech perception of
spectral asymmetry in relation to the background conditions. The
investigation of this situation is important for understanding the
performance of CI users in complex environments, and also for
exploring the mechanisms underlying speech perception in noise.
In the present study, a 12-channel vocoder was taken as a CI sim-
ulator. According to several authors [40], this simulation provides
results consistent with the outcome of cochlear implants. The
‘‘vocoded’’ speech was presented to normal-hearing listeners in
Please cite this article in press as: Kallel F et al. Influence of a shift in frequency
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experimental situations. The goal of this study is to compare pho-
neme recognition scores using two BCI modes (in simulation), in
quiet and in the presence of additional speech babble noise at dif-
ferent SNR levels; 6 dB, 0 dB and �6 dB. Bilateral (SBCI and ShBCI)
CI modes were also considered: performance of both bilateral CI
modes were measured at a low (250 updating per second (ups))
rate and at a moderate (500 ups) rate.
2. Cochlear implant simulator

2.1. Frequency bands (channels) constitution

A series of speech signals were presented to normal hearing lis-
teners. The signals were pre-processed to be representative of the
signal perceived by cochlear implantees. This principle was first
described by Dudley [10] and then reproduced by several authors
(e.g. [31,11]). The speech sounds were processed according to the
CI modes and the analysis rates. Tests were realized in quiet and
in noise. Different types of stimulation were generated following
the literature [21] based on the vocoder principle (Fig. 1).

The cochlear implant simulator was developed using speech
processing parameters of the 12-channel Neurelec Digisonic SP
CI. Twenty-four channels were used to simulate SBCI and ShBCI
CI modes (12 channels � 2 ears). Acoustic signal bandwidth ranged
from 300 to 6055 Hz. Several ways of allocating the filters in the
frequency domain were considered. Tranmüller’s equation [32]
was used in the current study:

bðf Þ � 6:7 � ArcHyperbolic sin
f � 20

600

� �
ð1Þ

where b is in barks and f is in Hz.
Many CI coding strategies exist, but with few exceptions, they

are all variants of the Continuous Interleaving Sampling (CIS) or
Advanced Combination Encoder (ACE) methods [4]. They split the
input speech signal into short time-segments (frames) and they
used a filter bank to yield a M-band spectral representation. ‘N’
bands (N < M for ACE, N = M for CIS) with the largest amplitudes
are selected and compressed in order to match the narrow dy-
namic range of electrical hearing stimulation. In the current study,
the ACE strategy was adopted to simulate BCI, with M = 12 and
N = 8. Practically, the considered frequency range (300–6055 Hz)
was divided into ‘M’ bands. This frequency range spanned from 3
to 20 barks; the spacing step was 1.42 barks for both SBCI and
ShBCI modes (Table 1). Sampling rate was 16 kHz. The speech sig-
nal, y(l) (l is the discrete-time index), was divided into overlapping
frames by the application of a window function. Then a Short-Time
Fast Fourier Transform (STFFT) was applied:

Yðk; kÞ ¼
XN�1

n¼0
yðlþ k � UÞ �wðlÞ � e�j2p

L l�k ð2Þ

where k is the frequency bin index, k is the time frame index, U is
the frame length in time and w is the analysis window (Hanning
window) of size L given by the following equation:

wðlÞ ¼ 0:5 1� cos 2 � p l
L

� �� �
ð3Þ

The window length (frame) was set to L = 128 samples, leading
to 64 spectrum bins. FFT bins were then combined to build up the
12 channels.

In the SBCI mode, both right and left sides had the same filters;
the number of FFT bands assigned to the left and the right analysis
channels, and the center frequencies are given by the upper part of
Table 1. With the ShBCI mode, frequency bands were shifted ½
bark up for the right ear (bottom part of Table 1).

The energy of the kth frequency bin is given by the following
equation:
distribution and analysis rate on phoneme intelligibility in noisy environ-
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Fig. 1. Spectrum digitization according to CI coding (channel representation).

Table 2
Mean recognition percentages according to the different situations.

Mode SBCI ShBCI

Rate SNR Mean recognition score %

250 Hz NAN 93.3 95.9
6 dB 81.3 85.4
0 dB 54.6 58.2
�6 dB 17 20.7

500 Hz NAN 95 97.3
6 dB 84 88
0 dB 58 65
�6 dB 20.4 24.9
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eðkÞ ¼ Y2
r ðkÞ þ Y2

l ðkÞ ð4Þ

where k is the frequency bin index and Y2
r ðkÞ and Y2

i ðkÞ are the real
and imaginary parts of the bin.

Then another stage was added to get the signal envelope. The
power E(m) of each band was calculated using Eq. (5), based on
the Parseval relation.

EðmÞ ¼
Pk¼nstartmþNm�1

k¼nstartm
eðkÞ

Nm
; m ¼ 1 : M ð5Þ

where m is the frequency band (channel) index. Nm and nstartm are
indicated in Table 1.

Fig. 2 represents the different bands for left and right sides,
when the ShBCI mode was considered.

In the ACE strategy, only the first ‘N’ channels presenting the
most important power levels are used for each frame. The remain-
ing channels are set to zero. In the current work, N = 8 was taken.
To reconstruct the acoustic signal, for each frequency band ‘m’, a
Hanning window ‘w(l)’ was weighted by its related power value
‘E(m)’ to get the envelope signal, Env(m, l), according to the follow-
ing equation:

Envðm; lÞ ¼ EðmÞ �wðlÞ; m ¼ 1 : M; l ¼ 1 : L ð6Þ

To prevent sharp variations, a further low pass filtering (cut-off
at 150 Hz) was applied to smooth the envelope. Then, a white noise
was shaped to fill each frequency band (3rd order Butterworth fil-
ter). In each frequency band, the speech signal was synthesized by
the multiplication of the shaped narrow band noise signal by the
corresponding smoothing envelope. The final test signal was pro-
Table 1
FFT bins attributed to the frequency channels and their corresponding frequencies in Hz f

Frequency Channels ‘m’ 1 2 3 4 5 6

Left ear
Number of bins Nm 1 1 2 2 2 3
Starting bin nstartm 3 4 5 7 9 11
Center frequencies fcenter

(Hz)
375 500 687 937 1187 150

Cut-off frequencies (Hz) 300–
448

448–
616

616–
810

810–
1041

1041–
1318

131
165

Right ear
Number of bins Nm 2 1 2 2 2 3
Starting bin nstartm 3 5 6 8 10 12
Center frequencies fcenter

(Hz)
437 625 812 1062 1312 162

Cut-off frequencies (Hz) 365–
523

523–
704

704–
916

916–
1168

1168–
1473

147
184

Please cite this article in press as: Kallel F et al. Influence of a shift in frequency
ments for simulated bilateral cochlear implants. Appl Acoust (2012), http://dx
duced by added all the channels together. The level of the final pro-
cessed speech signal was normalized so that the speech was
reproduced with the same Intensity as measured than the original
speech signal (70 dB). Fig. 3 sums up the different steps indicated
above.
2.2. Analysis rate

The stimulation rate is linked to the number of pulses per sec-
ond generated at each electrode of the cochlear implant. This
parameter represents the temporal resolution of the implant,
which is related to the perception ability of fast changes in the
speech signal at high stimulation rates [38,29,19].
or SBCI and ShBCI.
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In this study, the stimulation rate has been represented by the
analysis rate. Therefore, the value assigned to the parameter ‘‘rate’’
was the updating rate. The analysis rate was controlled by adjust-
ing of the overlap between the successive analysis windows. It will
be indicated in Hz. Two analysis rates have been considered.
Firstly, the analysis rate was set to 250 Hz, realized with a 50%
overlap between two successive analyses frames. Secondly, a
500 Hz analysis rate was achieved with a 75% overlap. Let us recall
that the speech signal was initially sampled at 16 kHz. Each frame
contained 128 points and lasted 8 ms. At the 250 Hz analysis rate,
the updated stimulus was refreshed every 4 ms, corresponding so
to a 50% overlap. At the 500 Hz, the stimulus was updated every
2 ms (75% overlap).
3. Method

In the present study, the influence of several stimulation modes
on speech intelligibility in quiet and in noisy environments was
investigated. Signal was ‘‘vocoded’’ using the same algorithms used
in CI processing. Processed speech signals were presented to nor-
mal hearing subjects. To assess the performance of the aforemen-
tioned strategies, comprehensive phonemes recognition tests
were conducted.
Please cite this article in press as: Kallel F et al. Influence of a shift in frequency
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3.1. Listeners

The proposed speech processing algorithms were assessed by a
group of fifty normal hearing subjects. Prior to the experiment ses-
sions, their audiogram was tested in the ENT department of the
Edouard-Herriot hospital of Lyon. Subject’s age ranged from 18 to
32 years. All participants were French native speakers. Tests with
all the subjects were carried in an anechoic room.
3.2. Stimuli

The phonetic material was selected from the French Lafon set
which contains twenty lists of seventeen 3-phoneme words pro-
nounced by a single male talker [23]. The sound level was cali-
brated at 70 dB SPL corresponding to a classical comfortable
level. The interfering noise was multi-talker speech babble. The
distance between the Loud Speakers (LS) and the Kemar (Knowl-
edge Electronic Manikin for Acoustic Research) manikin was about
2 m. Four SNRs were used: NAN (No Added Noise), 6 dB, 0 dB and
�6 dB. The target speech signal was placed directly in front of
the Kemar manikin at 0� azimuth (LS3). Speech signals were cor-
rupted by additional noise coming from two noise loudspeakers
placed symmetrically in both hemi-fields (�90� and 90�: LS1 and
distribution and analysis rate on phoneme intelligibility in noisy environ-
.doi.org/10.1016/j.apacoust.2012.05.014
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LS5). The experimental setup is presented in Fig. 4. The recorded
speech signals were processed using the previously described ’vo-
coder’ algorithm and then presented to the normal hearing sub-
jects. Two lists (34 words, thus 102 phonemes) were presented
to the listeners.

3.3. Listening session

The listening tests were conducted using a personal computer
connected to a CD player (PHILIPS-CD723). An audiometer (MAD-
SEN-Orbiter 922) was used for calibration and intensity level
adjustment. Stimuli were presented to the subjects though closed
professional ‘Sennheiser’ HD250 headphones at both ears. Speech
stimuli were processed, prior to the listening sessions, with MAT-
LAB software. Stimuli were generated in noise free and noisy con-
ditions with SNRs of 6 dB, 6 dB and �6 dB.

Prior to the formal testing, a training session containing ten ran-
dom words was delivered in order to familiarize each subject with
the stimuli. No score was calculated in the training session. Follow-
ing this training session, the subjects were tested in various exper-
imental conditions. During the testing session, the subjects were
instructed to repeat the words they heard. In total, there were 16
testing conditions (2 CI modes � 2 analysis rates � 4 SNRs). A
sequential test order, starting with words processed in quiet and
then in noise from the highest SNR (6 dB) and to the lowest SNR
(�6 dB) was employed. This sequential approach was chosen in or-
der to give the subjects some adaptation time before listening in
noisy conditions. At the end of each listening session, responses
were collected, stored and scored off-line according to the number
of correctly identified phonemes. All phonemes were scored. The
percentage of correctly repeated phonemes out of 102 (two of La-
fon’s lists) was then calculated.
Vocoded Signal 
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Kemar

LS 4 
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L
S2

 

LS1 LS 5 

LS6 

Recorded Signal 
Left Channel 

Vocoded Signal 
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LS4 and LS6 were not used.
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3.4. Results

3.4.1. Signal representation
For a signal processing point of view, a 3D representation of the

original speech and processed speech signals via both SBCI and
ShBCI CI modes (500 Hz analysis rate) in silent environment can
be illustrated in Fig. 5. In fact, the power levels (in dB) for each
frame of data and for each frequency channel ‘m’ (m = 1� � �12) are
represented. The example is the French word ‘agis’ (act) taken in
the first Lafon’s list. The overall 3-D shape of the signal is kept,
but ‘‘vocoding’’ introduced some loss at the beginning of the
utterance.

3.5. Statistical analysis

Intelligibility scores for this experiment were the percentage of
correctly repeated phonemes per test condition. Chi2 analysis with
the following parameters was performed to examine the effects of
the considered factors:

– Repeated measures (the same subjects underwent all the
situations).

– Dependant variable: the percentage of recognition (score).
– Three factors:
� The mode (SBCI, ShBCI).
� The analysis rate (250 Hz and 500 Hz).
� The noise level (this last factor was considered as random;

the first 2 factors were fixed).

This model, with both fixed and random effects, is a mixed-ef-
fect model and is a standard for data analysis (Baayen, 2008).
The ‘lmer’ program of the ‘lme4’ package [2] of the statistical pro-
gramming language and software environment R [28] was used.

Results indicated an effect of the mode (Chi2[1] = 112,
p < 0.001), the analysis rate (Chi2[1] = 72; p < 0.001) and, obvi-
ously, the SNR (Chi2[3] = 16,305; p < 0.001).

In addition, there was a significant interaction between the
mode and the SNR (Chi2[3] = 15; p < 0.005). No significant interac-
tion was seen between the analysis rate and the SNR (Chi2[3] = 0.7;
p = 0.8). No significant interaction appeared between the mode and
the analysis rate (Chi2[1] = 2.6; p = 0.1). Fig. 6 indicates the mean
percent scores on phoneme recognition as a function of the stimu-
lation mode in quiet and in noisy environment at different SNR
levels.

The results in Fig. 6 indicates that the performance depended on
both CI mode and the analysis rate in quiet and in noisy environ-
ments at different SNRs. Also, phoneme recognition score was
strongly affected by the SNR. Overall improvement of ShBCI vs SBCI
was 4%. Chi-2 tests confirmed the existence of the mode effect.
Mean recognition percentages are indicated on Table 2.

Post-hoc comparisons were run to explore the differences ob-
tained with the considered stimulation modes at different SNR lev-
els. We used the Tukey HSD test via the general linear hypothesis
test ‘glht’ function from multiple comparison ‘multcomp’ package
of R.

In quiet (No Added Noise: NAN), phoneme recognition was af-
fected by the stimulation mode. Post-hoc comparison indicated
that phoneme recognition performance improved using ShBCI over
SBCI and the improvement was about 2.5%; but this difference was
not significant (p > 0.005). When SNR was 6 dB, a significant
improvement of phoneme recognition was observed when ShBCI
mode was considered (p < 0.001). In fact, better phoneme recogni-
tion at 6 dB when the ShBCI mode was adopted and the improve-
ment was 4%. When signal and noise levels were identical, a
significant improvement of 5.3% for ShBCI over SBCI was observed
(p < 0.005). A similar pattern was observed at �6 dB SNR. ShBCI
distribution and analysis rate on phoneme intelligibility in noisy environ-
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Fig. 5. 3D representation of the French words ‘agis’. For the symmetrical stimulation mode (SBCI), both signals are identical to ShBCI left ear.
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was significantly better than SBCI (p < 0.005). Improvement ob-
tained with ShBCI was less than seen for 0 dB (4.1%).
4. Discussion

4.1. Shifted vs symmetrical (ShBCI vs SBCI)

Two modes of bilateral CI were considered in the current study:
SBCI and ShBCI. Better results were seen with ShBCI mode, espe-
cially in noisy conditions. In the case of ShBCI, the frequency bands
were not the same on both ears as there was a frequency shift be-
tween the two ears. This frequency shift, driven by the bark scale,
was delivered to the auditory system. It increases the redundancy
in the speech signal and subsequently can improve signal
intelligibility.

Now, it has to be seen with CI recipients if ShBCI mode (shifted)
is more beneficial than SBCI (symmetrical). It is well known that,
with implantees, each ear presents differences in neural survival
increasing the pattern differences transmitted to the brain. CI stim-
ulation indicated a difference and a shifted mode may amplify this
effect.
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4.2. Analysis rate

The refreshing rate was the second parameter considered in this
study. Low analysis rate (250 Hz) and a moderate analysis rate
(500 Hz) were examined. Rate can go up to 1000 Hz in the ACE
strategy. An average improvement of 3.3% in favor of the moderate
analysis rate (500 Hz) was seen. In quiet, the analysis rate pre-
sented no significant effect (difference was 1.5%). When the noise
was added, difference was more important and 500 ups was better
than 250 ups (2.6% at 6 dB, 5.1% at 0 dB and 3.8% at �6 dB).
4.3. Consistency with the literature

Current work findings are consistent with previous studies done
with Nucleus devices using the ACE strategy [36,14,24,39]. In these
studies, no effect of the stimulation rate for monosyllabic word or
consonant perception was seen. In this current work, results were
rather similar in quiet, but a difference appeared when noise was
added. This study agrees with speech perception outcomes ob-
tained in quiet.

In Weber et al. [39], the authors studied the performance ob-
tained with ACE strategy at 500, 1200 and 3500 pps; results did
distribution and analysis rate on phoneme intelligibility in noisy environ-
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not show a difference for the ACE strategy for rates ranging from
500 to 3500 pps. An evaluation of the effects of stimulation rate
on performance with the Nucleus Freedom CI was presented in
Balkany et al. [1]. Results pointed out that 67% of implantees pre-
ferred slow stimulation rates and the performance was not im-
proved with higher stimulation rates. Going further, results in
this current work are consistent with clinical trials done by Komal
et al. [15]; the authors presented a study on eight postlingually
deaf adults, users of the Nucleus CI24, and they explored speech
perception in quiet and in noise for low to moderate stimulation
rates. Their results, for six out of the eight tested subjects, showed
no significant effect of the stimulation rate for monosyllables rec-
ognition in quiet. But, results for the syllable test in noise indicated
improvements with 500 or 900 pps, compared to 275 and 350 pps
(for seven out of the eight subjects).
5. Conclusion

The current work investigated phoneme recognition through an
acoustic CI simulator built according to the Neurelc Digisonic SP CI
parameters. Two CI modes and two analysis rates have been con-
sidered. Phoneme recognition performances were measured with
and without a competing noise source at different SNR levels. Re-
sult indicated a significant interaction between CI mode and SNR.
It was seen that a shifted bilateral stimulation mode (ShBCI) was
more efficient than the symmetrical bilateral stimulation mode
(SBCI). An improvement in speech intelligibility was found with
ShBCI and it is thought to be due to some redundancy introduced
by the frequency shift and positively interpreted by the brain.
The envelope update rate was also varied to simulate different
analysis speeds. 250 Hz and 500 Hz updating rates were evaluated
and improvements were found with higher update rate, in the
presence of noise.
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